期刊文献+

一种等效快速非正交联合对角化算法

An Equivalent Algorithm for Fast Nonorthogonal Joint Diagonalization
下载PDF
导出
摘要 针对空间源信号参数估计实时性的需求,提出一种等效快速非正交联合对角化(EFJD)算法。该算法具有计算复杂度低和收敛速度快的特点,可有效提高空间源信号参数估计的实时性。该算法从两个方面减少运算量,从而加快联合对角化的收敛速度。一方面根据欲联合对角化的目标矩阵组中矩阵的个数通常大于矩阵秩的实际情形,对目标矩阵组进行预处理,将其中的矩阵个数降为矩阵的秩,减少了每次迭代的运算量;另一方面对初始值进行优化,减少了迭代次数。数学推导证明,当目标矩阵组中矩阵的个数相对于矩阵秩取较大值时,EFJD算法就可降低运算量,而且运算量随二者差值的增加显著降低。仿真结果不但验证了这一结论,还表明其联合对角化精度较快速Frobenius范数对角化(FFDiag)算法有所提高。 In view of the instantaneity requirement of parameter estimation of spatial source,an algorithm,named Equivalent Fast Joint Diagonalization (EFJD),is proposed in this paper.The EFJD algorithm,owns lower computational complexity and faster convergence and available for the parameter estimation of dynamic source.It reduces the computational complexity and accelerates the convergence of joint diagonalization by using two ways.Firstly,according to the situation that the number of matrices belonged to target matrix set is normally bigger than the rank of matrix,the number of matrices is reduced to the rank of matrix by using equivalent transformation,and the computational complexity in every iteration is decreased.Secondly,EFJD accelerates convergence by seeking a good initial value for iterative optimization algorithm.Mathematical derivation shows that EFJD can greatly reduce computational complexity,especially when the number of matrices belonged to the target set is much bigger than the rank of target matrices.Numerical simulations have shown that EFJD can not only reduce computational complexity of joint diagonalization but also improve the accuracy of joint diagonalization,compared with FFDiag.
作者 张江 张杭
出处 《宇航学报》 EI CAS CSCD 北大核心 2014年第3期362-368,共7页 Journal of Astronautics
基金 国家自然科学基金(61001106) 国家973项目(2009CB320400)
关键词 盲源分离 快速联合对角化 Blind source separation Fast joint diagonalization
  • 相关文献

参考文献12

  • 1程院兵,顾红,苏卫民.双基地MIMO雷达收发角和径向速度联合估计[J].宇航学报,2012,33(7):949-955. 被引量:1
  • 2胡增辉,朱炬波,何峰,梁甸农.基于联合对角化的远场相干信号波达方向估计[J].国防科技大学学报,2011,33(4):60-64. 被引量:3
  • 3宋海岩,朴胜春.基于高阶累积量矩阵组正交联合对角化的高分辨方位估计方法[J].电子与信息学报,2010,32(4):967-972. 被引量:10
  • 4Ning J, Farina D. Covariance and time-scale methods for blind separation of delayed sources [ J ]. IEEE Transaction on Biomedical Engineering, 2011, 58 (3): 550-556.
  • 5Zhou Y, Feng D Z, Liu J Q. A novel algorithm for two-dimensional frequency estimation [ J ]. Signal Processing, 2007, 87 ( 1 ) : 1 - 2.
  • 6Yeredor A. Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation [ J ]. IEEE Transactions on Signal Processing, 2002, 50(7): 1545-1553.
  • 7Ziehe A, Laskov P, Nohel G. A fast algorithm for joint diagonalization with non-orthogonal transformations and its application to blind source separation [ J ]. The Journal of Machine Learning Research, 2004, 5:777 -800.
  • 8Vollgaf R, Obermayer K. Quadratic optimization for simultaneous matrix diagonalization[J]. IEEE Transactions on Signal Processing, 2006, 54(9) : 3270 -3278.
  • 9徐先峰,冯大政.一种快速的解盲源分离新算法[J].电子学报,2010,38(12):2780-2785. 被引量:3
  • 10Yeredor A. On using exact joint diagonalization for noniterative approximate joint diagonalization [ J ]. IEEE Signal Processing Letters, 2005,12 (9) : 645 -648.

二级参考文献46

  • 1周祎,冯大政,刘建强.基于联合对角化的近场源参数估计[J].电子与信息学报,2006,28(10):1766-1769. 被引量:5
  • 2王鼎,吴瑛.基于改进遗传算法的矩阵联合对角化[J].电子与信息学报,2007,29(3):578-581. 被引量:3
  • 3Li Xi-lin and Zhang Xian-da. Nonorthogonal joint diagonalization free of degenerate solution[J]. IEEE Transactions on Signal Processing, 2007, 55(5): 1803-1814.
  • 4Wang Fu-xiang, Liu Zhong-kan, and Zhang Jun. A new joint diagonalization algorithm with application in blind source separation[J]. IEEE Signal Processing Letter, 2006, 13(1): 41-44.
  • 5Feng Da-zhang, Zhang Xian-da, and Bao Zheng. An efficient multistage decomposition approach for independent components[J]. Signal Processing, 2003, 83(1): 181-197.
  • 6Lie Su, Leyman A Ra, and Chew Yo H. Fourth-order and weighted mixed order direction-of-arrival estimators[J]. IEEE Signal Processing Letters, 2006, 12(11): 691-695.
  • 7Weissa A J and Friedlanderb B. Array processing using joint diagonalization[J]. Signal Processing, 1996, 50(3): 205-222.
  • 8Cardoso J F and Souloumiac A. Jacobi angles for simultaneous diagonalization[J]. SIAM Journal on Matrix Analysis and Applications. 1996, 17(1): 161-163.
  • 9Wax M and Sheinvald J. A least-squares approach to joint diagonalization[J]. IEEE Signal Processing Letters, 1997, 4(2): 52-53.
  • 10A Belouchrani,K A Meraim,J F Cardoso,et al.A blind source separation technique using second-order statistics[J].TEEE Transactions on signal Processing,1997,45(2):434-444.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部