摘要
设(Xi,Yi),i=1,…,n是从取值于Rd × R1的随机向量(X,Y)中抽取的i.i.d.样本;E(Y)<∞,而以m(x)=E(YX=x)表示回归函数.在截尾情况下,观察到的不是诸Yi本身,而是Zi= min(Yi, Ti)及 δi=I(Yi≤Ti),其中Ti是与(Xi,Yi)独立的随机变量, i= 1, 2,…,n.当 T的分布未知时,在一定条件下,得到了回归函数改良估计的强合性.
Let (X, Y) be a Rd × R1-Valued random vector with E(Y) < ∞ and m(x) = E(YX = x) be the regression of Y with respect to X. Suppose that (Xi, Yi), i = 1,''', n are i.i.d. samples drawn from (X, Y), it is desired to estimate m(x) based on these samples. In this paper we discuss the case that {Yi} are censored by random variables {Ti}. It means that we can only observe Zi = min(Yi,Ti) and δi = I(Yi ≤Ti). We always suppose that Ti i.i.d. and independent of (Xi, Yi). We obtain strong cosistency of regression function.
出处
《应用概率统计》
CSCD
北大核心
2000年第4期379-390,共12页
Chinese Journal of Applied Probability and Statistics
基金
国家自然科学基金
北京市自然科学基金资助项目(22304100113016
1992005).