期刊文献+

应用轮廓波和ICA的掌纹去噪与识别

PALMPRINT DENOISING AND RECOGNITION WITH CONTOURLET AND ICA
下载PDF
导出
摘要 在掌纹识别的实际操作过程中,不可避免地会受到噪声的影响,为了增强掌纹图像信息,需要去噪。轮廓波变换能够便捷地描述自然图像中的方向和纹理信息,掌纹图像纹理信息丰富,所以应在掌纹识别中引入轮廓波去噪,以突出纹理特征,进而提高识别率。提出基于轮廓波去噪的ICA(Independent component analysis)掌纹识别算法,先对掌纹图像进行轮廓波去噪,利用ICA实现掌纹特征提取与识别。基于香港理工大学掌纹数据库的仿真结果显示,轮廓波去噪方法的识别率高于小波去噪方法,说明这种方法具有一定的理论研究意义和实用价值。 During the course of palmprint recognition, it is unavoidable to be influenced by noises. In order to enhance palmprint image information, it is necessary to denoise. Contourlet can conveniently describe the direction and texture information in natural images with plenty of texture information in palmprint images, therefore contourlet is introduced into palmprint recognition to highlight texture features and further improve recognition rate. The paper proposes ICA palmprint recognition algorithm based on contourlet denoising, which firstly denoises palmprint images by contourlet, then implements palmprint feature extraction and recognition by ICA. Simulation results based on Hong Kong Polytechnic Unversity palmprint database show that the recognition rate of contourlet denoising niethod is higher than that of wavelet denoising, thus illustrating that the proposed method is of both theoretical research meaning and practical application value.
出处 《计算机应用与软件》 CSCD 北大核心 2014年第3期156-158,共3页 Computer Applications and Software
基金 国家自然科学基金项目(60970058) 江苏省自然科学基金项目(BK2009131) 江苏省青蓝工程项目 苏州市科技基础设施建设计划项目(SZS201009) 苏州市职业大学创新团队建设项目(3100125) 苏州市职业大学校级课题(2012SZDYY04)
关键词 轮廓波 独立分量分析 掌纹识别 Contourlet ICA Palmprint recognition
  • 相关文献

参考文献10

  • 1Guo Z H, Zuo W M, Zhang L, et "al. A unified distance measurement for orientation coding in palmprint verification [ J ]. Neurocomputing,2010, 73(4 -6) :944-950.
  • 2苑玮琦,范永刚,柯丽.相位一致性和对数Gabor滤波器相结合的掌纹识别方法[J].光学学报,2010,30(1):147-152. 被引量:11
  • 3李春燕,卢光明,黎伟.基于曲面曲率和RLDA的3D掌纹识别方法[J].中国图象图形学报,2011,16(5):807-812. 被引量:7
  • 4Zhang D, Kanhangad V, Luo N, et al. Robust palmprint verification u- sing 2D and 3D features[ J]. Pattern Recognition, 2010, 43 ( 1 ) :358 - 368.
  • 5Zhang D, Guo Z H, Lu G M, et al. An online system of multi-spectral palmprint verification[ J]. IEEE Transactions on Instrumentation and Measurement, 2010,59 ( 2 ) :480 - 490.
  • 6Yuen P C, Lai J H. Face representation using independent component analysis[]]. Pattern Recognition, 2002, 35 (6) :1247-1257.
  • 7Hsieh P C, Tung P C. A novel hybrid approach based on subpattern technique and whitened PCA for face recognition[ J] . Pattern Recogni- tion, 2009, 42 (5) :978-984 .
  • 8Connie T, Teoh A, Goh M, et al. Palmprint recognition with PCA and ICA[C. Image and Vision Computing, Massey University, Palmer- ston North, New Zealand, 2003:227 -232.
  • 9Do M N, Vetterli M. The .contourlet transform: an efficient directional multiresolution image representation [ J ]. IEEE Transactions on Image Processing,2005,14 (12) :2091 - 2106.
  • 10贾建,陈莉.基于正态逆高斯模型的非下采样Contourlet变换图像去噪[J].电子学报,2011,39(7):1563-1568. 被引量:11

二级参考文献30

  • 1L. Zhang, D. Zhang. Characterization of palmprints by wavelet signatures via directional context modeling[J], IEEE Trans. on System, Man, and Cybernetics-Part B: Cybernetics, 2004, 34 (3) :1335-1347.
  • 2W. Kong, D. Zhang. Frature-level fusion for effective palmprint authentication[C]. Proc. of the International Conference on Biometric Authentication, Lecture Notes in Computer Science, 2004: 761 - 767.
  • 3W. Kong, D. Zhang, M. Kame. Palmprint identification using feature-level fusion [J]. Pattern Recognition, 2006, 39 ( 3 ) : 478-487.
  • 4D. Zhang, W. Kong, J. You et al.. Online palmprint identification[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence,2003 ,25 ( 9 ) :1041-1050.
  • 5W. Kong, D. Zhang, W. Li. Palmprint feature extraction using 2-D Gabor filters[J]. Pattern Recognition, 2003,36: 2339 - 2347.
  • 6W. Kong, D. Zhang. Palmprint texture analysis based on low- resolution images for personal authentication[C]. Proc. of the 16^th IEEE International Conference on Pattern Recognition,2002:807-810.
  • 7M.C. Morrone, D.C. Burr. Feature detection in human vision: A phase dependent energy model[C]. Proc. of the Royal Society, 1988, 235:221-245.
  • 8S. Venkatesh and R. A. Owens. An energy feature detection scheme[C]. The International Conference on Image Processing, 1989, 553-557.
  • 9P. D. Kovesi. Invariant measures of image features from phase information[D]. University of Western Australia, 1996.
  • 10Peter Kovesi. Image features from phase congruency[J]. J. Computer Vision Research, 1999,1(3) ;.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部