摘要
建立了复合靶的蒙特卡罗粒子输运计算模型,以"闪光二号"加速器为电子束源,模拟了电子和光子在不同材料中的输运规律,研究了钽和聚乙烯组成的复合阳极靶对辐射X射线场的影响。模拟结果表明:随着钽厚度的增加,辐射X射线平均能量增大,能量转换效率先增大后减小;聚乙烯可明显减小辐射场中的电子份额。当钽和聚乙烯的厚度分别取20μm、3mm时,辐射场中平均光子能量为102.68keV;光子总能量为88.62J,远大于电子总能量0.02J;X射线能量转换效率为0.57%。根据数值模拟结果和实验条件设计了复合靶,计算和测得的X射线平均能量分别为108和121keV,二者符合得较好。
Electrons energy distribution of Flash-Ⅱ accelerator was calculated using current and voltage . The Monte Carlo N-particle transport code was used for the radiation simulation , and the influence of target thickness and structure on X-ray parameters was simulated .The numerical results indicate that the average energy of photons increases with tantalum target thickness ,and the conversion efficiency of X-ray has a maximum value . The ratio of total energy of photons to forward electrons distinctly decreases when polythene materials are added behind tantalum target .As an example ,for 20 μm tantalum and 3 mm polythene targets , the average energy of photons is 102.68 keV ,X-ray energy is 88.62J which is greater than 0.02J of the forward electrons energy ,and the conversion efficiency is 0.57% .One composite target was designed for Flash-Ⅱ accelerator based on the simulation results and engineering conditions ,and the simulation results agree well with the measured data .
出处
《原子能科学技术》
EI
CAS
CSCD
北大核心
2014年第3期506-511,共6页
Atomic Energy Science and Technology
关键词
粒子输运
轫致辐射
复合靶
X射线
particle transport
bremsstrahlung
composite target
X-ray