期刊文献+

两种半监督多类水下目标识别算法的比较 被引量:6

Comparison of two semi-supervised multiclass underwater target recognition algorithm
下载PDF
导出
摘要 基于半监督学习理论的水下目标识别系统能够从未知类别测试集中识别出已学习类别测试样本,并拒判未学习类别测试样本。描述并讨论了两种基于支持向量数据描述(Support Vector Data Description,SVDD)的半监督水下目标识别算法:半监督SVDD与半监督SVDD集成。利用四类实测水下目标样本进行实验,训练样本为三类已知类别样本,测试样本为四类样本,包含一类未学习类别样本。对两种算法实验结果进行比较,表明半监督SVDD集成算法比半监督SVDD算法能更好地识别已学习类别测试样本,并能有效拒判未学习类别测试样本,不足之处为时间消耗与过程复杂程度比半监督SVDD算法高。 The underwater target recognition system based on the theory of supervised learning can recognize class learned underwater targets’ samples and reject class unlearned underwater targets’ samples from class unknown testing set. This paper describes and discusses two semi-supervised underwater target recognition algorithms based on Support Vector Data Description(SVDD): Semi-supervised SVDD algorithm(SS-SVDD) and Semi-supervised SVDD ensemble algorithm(SS-SVDDE). Four different classes of underwater targets’ samples are used in the experiment, the training samples are 3-classes samples, the testing samples are 4-classes samples which contain one class of class unlearned samples. By comparing the two algorithms’ experimental results, it is found that SS-SVDDE algorithm can recognize class learned testing samples better than SS-SVDD algorithm and effectively reject class unlearned testing samples, but SS-SVDDE algorithm’s time consumption and process complexity are higher than SS-SVDD algorithm.
出处 《声学技术》 CSCD 2014年第1期10-13,共4页 Technical Acoustics
关键词 半监督 水下目标识别 类别测试样本 支持向量数据描述 分类器集成 semi-supervised underwater target recognition class test samples Support Vector Data Description(SVDD) classifier ensemble
  • 相关文献

参考文献5

二级参考文献37

  • 1陆从德,张太镒,胡金燕.基于乘性规则的支持向量域分类器[J].计算机学报,2004,27(5):690-694. 被引量:21
  • 2胡正平,张晔.带拒识能力的双层支持向量模型分类器[J].电子学报,2005,33(7):1200-1203. 被引量:3
  • 3胡国胜,钱玲,张国红.支持向量机的多分类算法[J].系统工程与电子技术,2006,28(1):127-132. 被引量:33
  • 4Vladimir N Vapnik. Nature of Statistical Learning Theory[M]. New York: Springer Verlag,2000.
  • 5David M J Tax. Support vector data description [ J ]. Machine Learning,2004,54:45 - 66.
  • 6Hongliang Jin, Qingshan Liu, Hanqing Lu. Face detection using one-class-based support vectors[A ]. Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition (FGR'04)[C]. Seoul: IEEE Press,2004.
  • 7Scholkopf B. Estimating the support of a high-dimensional distribution[ J ]. Neural Computation, 2001,13 : 1443 - 1471.
  • 8Tao Ban. Implementing multi-class classifiers by one-class classification methods[ A ] .2006 International Joint Conference on Neural Networks [ C ]. Vancouver: IEEE Press, 2006. 327 - 332.
  • 9TAX D M J,DUIN R P W.Support vector data description[J].Machine Learning,2004,54(1):45-66.
  • 10VAPNIK V N.The nature of statistical learning theory[M].New York:Springer-Verlag,1995.

共引文献47

同被引文献39

  • 1纪正飚,王吉林,赵力.基于模糊K近邻的语音情感识别[J].微电子学与计算机,2015,32(3):59-62. 被引量:10
  • 2刘先康,梁菁,任杰,等.修正最近邻模糊分类算法在舰船目标识别中的应用.计算机工程与应用,2010;46(9):228—231.
  • 3Denoeux T. A K-nearest neighbor classification rule based on Demp- ster-Shafer theory. IEEE Trans on Systems, Man and Cybernetics, 1995; 25(05) : 804-813.
  • 4Smarandache F, Dezert J. Advances and applications of DSmT for information fusion. Rehoboth: American Research Press, 2004.
  • 5Smets P. The transferable belief model. Artificial Intelligence, 1994;66(2) :191-243.
  • 6Smarandache F, Dezert J. Advances and applications of DSmT forinformation fusion. Rehoboth ; American Research Press, 2006.
  • 7Smarandaehe F, Dezert J. Advances and applications of DSmT for information fusion. Rehoboth : American Research Press ,2009.
  • 8刘先康,梁菁,任杰,等.修正最近邻模糊分类算法在舰船目标识别中的应用[J].计算机工程与应用,2010,46(9):228-231.
  • 9SMARANDACHE F, DEZERT J. Advances and Applications of DSmT for Information Fusion 19[M]. Rehoboth: American Re- search Press, 2004.
  • 10SMARANDACHE F, DEZERT J. Advances and Applications of DSmT for Information Fusion 19[M]. Rehoboth: American Re- search Press, 2006.

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部