期刊文献+

方程△u+ g(+|X|)f(u)=0的环上 Dirichlet边值问题的多重正对径解 被引量:13

THE MULTIPLE POSITIVE RADIAL SOLUTIONS OF DIRICHLET PROBLEMS FOR ELLIPTIC EQUATIONS △u+ g(|x|)f(u) =0 IN ANNULUS
原文传递
导出
摘要 考察了二阶半线性椭圆边值问题 自治区△u+ g(|X|)f(u)=0, R1<|X|<R2,u(X)||X|=R1=u(x) ||x|=R2=0的正对径解的多解性.文中不要求存在,我们的工作推广了Erbe和Lian在1994年和1996年的结果. We study the multiplicity of positive radial solutions of second order semilinear elliptic BVP △u + g(|X|)f(u) =0, R1<|X|< R2, u(X)||X|=R1= u(X) ||x|=R2= 0. In this paper it is no required that exist. Our work is a develop to [4] and [5].
出处 《系统科学与数学》 CSCD 北大核心 2000年第4期487-492,共6页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金
关键词 DIRICHLET边值问题 正对径解 椭圆型方程 多解性 Second order elliptic equations, Dirichlet boundary value problem, positive radial solutions.
  • 相关文献

参考文献4

  • 1钟承奎 范先令.非线性泛函分析引论[M].兰州:兰州大学出版社,1988..
  • 2Lian Weicheng,Proc Am Math Soc,1996年,124卷,4期,1117页
  • 3钟承奎,非线性泛函分析引论,1988年
  • 4Ni Weiming,Pure Appl Math,1985年,38卷,1期,67页

共引文献1

同被引文献23

  • 1蒋达清.MULTIPLE POSITIVE SOLUTIONS TO SINGULAR BOUNDARY VALUE PROBLEMS FOR SUPERLINEAR SECOND ORDER ODES[J].Acta Mathematica Scientia,2002,22(2):199-206. 被引量:11
  • 2姚庆六.一般Lidstone边值问题的n个正解的存在性[J].数学学报(中文版),2005,48(2):365-376. 被引量:22
  • 3姚庆六.一类次线性分数微分方程的正解存在性[J].应用数学学报,2005,28(3):429-434. 被引量:6
  • 4Nieto J J. Nonlinear second-order periodic boundary value problems. J. Math. Anal. Appl., 1988, 130(1): 22-29.
  • 5Gossez J P and Pmari P. Periodic solutions of a second order ordinary differential equation: a neccesary and sufficient condition for nonresonance. J. Differential Equations, 1991, 94(1): 67-82.
  • 6Cabada A. The method of lower and upper solutions for second, third, fourth and higher order boundary value problems. J. Math. Anal. Appl., 1994, 185(3): 302-320.
  • 7Atici F M and Guseinov G Sh. On the existence of positive solutions for nonlinear differential equations with periodic boundary conditions. J. Comput. Appl. Math., 2001, 132(3): 341-356.
  • 8Torres P J. Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem. J. Differential Equations, 2003, 190(5): 643-662.
  • 9Yao Q. Positive solutions for eigenvalue problems of fourth-order elastic beam equations. Appl. Math. Letters, 2004, 17(2): 237 243.
  • 10Yao Q. Existence, multiplicity and infinite solvability of positive solutions to a nonlinear fourth-order periodic boundary value problem. Nonlinear Anal. TAM, 2005, 63(2):237-246.

引证文献13

二级引证文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部