期刊文献+

不同维数分数阶混沌系统的Q-S同步 被引量:4

Q-S synchronization of fractional-order chaotic systems with non-identical dimensions
原文传递
导出
摘要 本文研究了不同维数的分数阶混沌系统的Q-S同步问题.以分数阶系统的稳定性理论和反馈控制理论为基础,通过增加维数的方法,把不同维数的分数阶混沌系统的同步问题转化为相同维数混沌系统之间的同步问题,设计了合适的同步控制器,实现了不同维数的分数阶混沌系统的Q-S同步,数值仿真进一步验证了所设计的控制器的有效性. This paper focuses on the Q-S synchronization of the fractional-order chaotic systems with non-identical dimensions.Based on the stability analysis of fractional-order systems and feedback control technique,a general formula for designing the controller is proposed to achieve adaptive Q-S synchroni-zation between two different chaotic systems with different structures.Moreover,the corresponding simulations agree well with the theoretical results.
作者 张凡弟
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第2期331-334,共4页 Journal of Sichuan University(Natural Science Edition)
基金 甘肃省自然科学基金资助项目(0808-04) 天水师范学院科研基金项目(TSA0938)
关键词 分数阶系统 Q-S同步 反馈控制 Fractional-order chaotic systems Q-S synchronization Feedback control
  • 相关文献

参考文献7

  • 1Pecora L M, Carroll T L. Synchronization in chaotic systems [J]. Phys Rev Lett, 1990,64: 821.
  • 2Yau H T, Kuo C L , Yan J 1. Fuzzy sliding mode control for a class of chaos synchronization with uncertainties [J]. Int J Nonlinear Sci Numer Simul , 2006, 17: 333.
  • 3Agrawal S K, Srivastava M, Das S. Synchronization of fractional order chaotic systems using active control method [J]. Chaos Solitons Fractal, 2012, 45: 737.
  • 4Yan Z Y. Q-S (lag or anticipated) synchronization backstepping scheme in a class of continuous-time hyperchaotic system- A symbolic-numeric computation approach[J]. Chaos, 2005, 15: 023902.
  • 5Yan Z Y. Chaos Q-S synchronization between Rossler system and a new unified chaotic system[J]. Phys Lett A, 2005, 334: 406.
  • 6Podlubny I. Fractional differential equations [M]. New York: Academic Press, 1999.
  • 7Diethelm K, Ford N J. Freed A D. A predictor-corrector approach for the numerical solution of fractional differential equations [J]. Nonlinear Dynamics. 2002, 29: 3.

同被引文献37

  • 1赵跃宇.非保守力学系统的Lie对称性和守恒量[J].力学学报,1994,26(3):380-384. 被引量:77
  • 2周红,凌燮亭.有限精度混沌系统的m序列扰动实现[J].电子学报,1997,25(7):95-97. 被引量:99
  • 3Olfati-Saber R. Flocking for multi-agent dynamicsystem: algorithms and theory [J]. IEEE TransAutomat Contr, 2006 , 51(3) : 401.
  • 4Lin Z Y,Francis B,Maggiore M. Necessary andsufficient graphical conditions for formation controlof unicycles [ J ]. IEEE Trans Automat Contr,2005,50(1) : 121.
  • 5Cortes J,Martinez S,Karatas T,et al. Coveragecontrol for mobile sensing networks [ J ]. IEEETrans Robotics Automat, 2004,20(2) ; 243.
  • 6Chatterjee A. Statistical origins of fractional deriva-tives in viscoelasticity [J], J Sound Vib,2005,284(3): 1239.
  • 7Baleanu D,Muslish S I. About fractional supersym-metric quantum mechanics [J]. Czech J Phys,2005, 55(9): 1063.
  • 8Delavari H, Lanusse P, Sabarier J. Fractional ordercontroller design for a flexible link manipulator ro-bot [J]. Asian J Contr, 2013,15(3) : 783.
  • 9Aghababa M P. Robust stabilization and synchroni-systems via a novel fractional sliding mode controller[J]. Commun Nonlinear Sci Numer Simulate 2012,17(6): 2670.
  • 10Yu Z Y, Jiang H J? Hu C. Leaderfollowing con-sensus of fractional-order multi-agent systems underfixed network topology [ J Neurocomputing,2015, 149: 613.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部