期刊文献+

碳纳米管-铜纳米线复合结构的形成和热力学稳定性

Formation and thermal stability of compound structure of carbon nanotube and copper nanowire
原文传递
导出
摘要 通过分子动力学的方法研究了碳纳米管填充一定数量的铜纳米粒子形成碳纳米管-铜纳米线(CNT/CuNW)复合结构的过程.通过构象演变和体系能量的变化,可以将整个的铜粒子填充碳纳米管的过程中可分为三个过程:构象调整,填充吸附和构象稳定.对比分析高温下包裹和填充形成CNT/CuNW复合结构的变化,可以看出填充形成的CNT/CuNW的稳定性比包裹形成的CNT/CuNW的稳定性要好.通过径对径向分布函数的分析,可以进一步确定,在填充形成的复合结构的熔点要比包裹形成的CNT/CuNW的高,这主要归因于碳纳米管高的热稳定性. Molecular dynamics simulations are used to study the processes of the Cu nanowire (CuNW) filling into the single wall carbon nanotubes (CNT).According to the formation of the configuration and the total energies of the systems,we find that the filling process can be divided into three parts:confor-mational adj ustment,filling and adsorption,stable conformation.From the structure of CNT/CuNW, we find the thermostability of CNT/CuNW through the CuNW filling onto CNT is better than that of CNT/CuNW through the self-scrolling CNT onto CuNW at the high temperature.By calculating the ra-dial distribution function of CuNW,we have found that the melting temperature of CuNW is increased because the higher thermostability of CNT.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第2期359-364,共6页 Journal of Sichuan University(Natural Science Edition)
关键词 铜纳米线 碳纳米管 分子动力学 分子扩散 CuNW CNT Molecular dynamics simulations Molecular diffusion
  • 相关文献

参考文献25

  • 1Zhang A v , Zhou M H, Han L, et al. Combined potential of three catalysis types on TiO2 nanotube (TNT) /Ti and nanoparticle (TNP) /Ti photoelectrodes , A comparative study[J]. Applied Catalysis A: General, 2010, 385:114.
  • 2Shen W Q, Huggins F E, Shah N. Novel Fe-Ni nanoparticle catalyst for the production of CO- and CO,-free H, and carbon nanotubes by dehydrogenation of methane[J]. Applied Catalysis A: General, 2008, 351 :102.
  • 3Kang Q, Yang L X, Cai Q Y. An electro-catalytic biosensor fabricated with Pt- Au nanoparticle-decorated titania nanotube array [J]. Bioelectrochemistry and Bioenergetics 2008, 74: 62.
  • 4Golberg D, Costa P M F J, Mitome M. Engineering of filled carbon nanotubes in a transmission electron microscopej J]. Adv Mater, 2007,19: 1937.
  • 5Tit N , Dharma-wardana M W C. Superconductivity in carbon nanotubes coupled to. Transition Metal Atoms[J]. Europhys Lett, 2003, 62:405.
  • 6Liu C v , Hu J M. Hydrogen peroxide biosensor based on the direct electrochemistry of myoglobin immobilized on silver nanoparticles doped carbon nanotubes film [J]. Biosensors and Bioelectronics, 2009, 24: 2149.
  • 7Lee J H, Kong B S. Fabrication of single-walled carbon nanotube/tin nanoparticle composites by electrochemical reduction combined with vacuum filtration and hybrid co-filtration for high-performance lithium battery electrodes [J]. Journal of Power Sources, 2009, 194: 520.
  • 8Liu Z W, Bando Y. A novel method for preparing copper nanorods and nanowires [J]. Adv Mater, 2003, 15: 303.
  • 9Monson C F, Wolley A T. DNA-templated construction of copper nanowires[J]. Nano Lett, 2003, 3: 359.
  • 10Molares MET, Buschmann V, Dobrev D. Singlecrystalline copper nanowires produced by electrochemical deposition in polymeric ion track membranes[J]. Adv. Mater. 2001, 13: 62-65.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部