摘要
在假设弹性系数为常数的前提下 ,采用有限变形弹塑性有限元法 ,研究了单向压缩时如何用简单的幂次本构关系来逼近载荷 -位移实验曲线。将这一本构关系推广到多维弹塑性大变形 ,用于解决金属成型问题时 ,受变形大小的限制 ;改用具有能量共轭关系的旋转克希霍夫应力和对数应变进行计算 ,则不受变形大小的限制 。
Assuming that the elastic coefficient is a constant, using the elastoplastic finite element algorithms, and simple power hardening constitutive relation, the load displacement curve is obtained for one dimensional. The constitutive relation for two dimensional elastoplastic finite deformation can be extended and can be used to solve the protem when the metal forging processes with the restriction of the degree of deformation. The rotated Kirchholff's stress and logarithmic strain can be used to overcome this defect, and the good results can be obtained.
出处
《中国农业大学学报》
CAS
CSCD
北大核心
2000年第4期30-34,共5页
Journal of China Agricultural University
基金
国家自然科学基金资助项目
关键词
有限变形
弹塑性有限元法
金属成形
应力应变
finite deformation
elastoplastic finite element algorithms
metal forming