期刊文献+

空间四阶的时间亚扩散方程的有限差分方法 被引量:2

Finite difference methods for time subdiffusion equation with space fourth-order
下载PDF
导出
摘要 提出了两个求解空间四阶的时间亚扩散方程的数值方法,其误差阶分别为O(τ+h^2)和O(τ~2+h^2).通过Fourier方法,发现两个差分格式均为无条件稳定的.最后,通过数值例子,验证了两个算法的有效性. Two numerical schemes for a time subdiffusion equation with space fourth-order are proposed, and the convergence orders are O(τ+h2) and O(τ2+h2), respectively. By using the Fourier method, it is found that two finite difference schemes are all unconditionally stable. Finally, numerical examples are given to testify the efficiency of the numerical schemes.
机构地区 上海大学理学院
出处 《应用数学与计算数学学报》 2014年第1期96-108,共13页 Communication on Applied Mathematics and Computation
基金 国家自然科学基金资助项目(11372130) 上海市教育委员会科研创新重点资助项目(12ZZ084)
关键词 分数阶 Fourier方法 亚扩散方程 有限差分方法 fractional order Fourier method subdiffusion equation finite difference method
  • 相关文献

参考文献20

  • 1Podlubny I.Fractional Differential Equations[M].San Diego:Academic Press,1999.
  • 2Metzler R,Klafter J.The random walk's guide to anomalous diffusion:a fractional dynamics approach[J].Physics Reports,2000,339(1):1-77.
  • 3郭柏灵,蒲学科,黄凤辉.分数阶偏微分方程及其数值解[M].北京:科学出版社,2011.
  • 4曹建雄,丁恒飞,李常品.分数阶扩散方程的隐差分格式[J].应用数学与计算数学学报,2013,27(1):61-74. 被引量:7
  • 5Diethelm K,Ford N J,Freed A D.A predictor-corrector approach for the numerical solution of fractional differential equations[J].Nonlinear Dynamics,2002,29:3-22.
  • 6Li C P,Chen A,Ye J J.Numerical approaches to fractional calculus and fractional ordinary differential equation[J].Journal of Computational Physics,2011,230(9):3352-3368.
  • 7Chen C M,Liu F,Turner I,Anh V.A Fourier method for the fractional diffusion equation describing sub-diffusion[J].Journal of Computational Physics,2007,227(2):886-897.
  • 8Yuste S B.Weighted average finite difference methods for fractional diffusion equations[J].Journal of Computational Physics,2006,216(1):264-274.
  • 9Cui M R.Compact finite difference method for the fractional diffusion equation[J].Journal of Computational Physics,2009,228(20):7792-7804.
  • 10Meerschaert M M,Tadjeran C.Finite difference approximations for two-sided space fractional partial differential equations[J].Applied Numerical Mathematics,2006,56(1):80-90.

二级参考文献10

  • 1Bagley R L, Calico R A. Fractional order state equations for the control of viscoelastic structures [J].Journal of Guidance, Control, and Dynamics, 1991,14(2): 304-311.
  • 2Koeller R C. Application of fractioal calculus to the theory of viscoelasticity [J].Journal of Applied Mechanics, 1984,51: 299-307.
  • 3Ichise M, Nagayanagi Y, Kojima T. An analog simulation of non-integer order transfer func- tions for analysis of electrode processes [J]. Journal of Electroanalytical Chemisty Interracial Electrochemistry, 1971, 33: 253-265.
  • 4Benson D A, Wheatcraft S W, Meerschaert M M. Application of a fractional advection-dispersion equation [J].Water Resources Research, 2000,36(6): 1403-1412.
  • 5Li C P, Zeng F H. Finite difference methods for fractional differential equations [J].Int J Bifurcation Chaos, 2012,22(4):1230014 (28).
  • 6Podlubny I.Fractional Differential Equations [M]. San Diego: Academic Press, 1999.
  • 7Lubich Ch. Discretized fractional calculus [J].SIAM J Math Anal, 1986,17: 704-719.
  • 8Tian W Y, Zhou H, Deng W H. A class of second order difference approximations for solving space fractional diffusion equations [J]. arXiv:1201.5949v3 [math.NA] 7 Mar. 2012.
  • 9Langlands T, Henry B. The accuracy and stability of an implicit solution method for the fractional diffusion equation [J].J Comput Phys, 2005,205 (2): 719-736.
  • 10Yuste S B, Acedo L. An explicit finite difference method and a new yon Neumann-type stability analysis for fractional diffusion equations [J]. SIAM Journal on Numerical Analysis, 2005, 46(5): 1862-1874.

共引文献30

同被引文献7

  • 1郭柏灵,蒲学科,黄凤辉.分数阶偏微分方程及其数值解[M].北京:科学出版社,2011.
  • 2陆金甫,关治.偏微分方程数值解法[M].北京:清华大学出版社,2007:82.
  • 3G.H. Golub, C.F. Van Loan. Matrix Computations(third ed.)[M]. Baltimore and London: Johns Hopkings University Press, 1996.
  • 4Podlubny I. Fractional Differential Equations[M]. San Diego: Acdemic Press, 1999.
  • 5Li C P, Chen A, Ye J J. Numerical approaches to fractional calculus and fractional ordinary differential equation[J]. Journal of Computational Physics, 201,230(9): 3352-3368.
  • 6Chen Y H, Yu C Y. A new algorithm for computing the inverse and the determinant of a Hessenberg matrix[J]. Applied Mathe- matics and Computation, 2011, (218): 4433-4436.
  • 7王自强,曹俊英.分数阶扩散方程的一个新的高阶数值格式[J].数学的实践与认识,2015,45(6):315-320. 被引量:1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部