摘要
提出了两个求解空间四阶的时间亚扩散方程的数值方法,其误差阶分别为O(τ+h^2)和O(τ~2+h^2).通过Fourier方法,发现两个差分格式均为无条件稳定的.最后,通过数值例子,验证了两个算法的有效性.
Two numerical schemes for a time subdiffusion equation with space fourth-order are proposed, and the convergence orders are O(τ+h2) and O(τ2+h2), respectively. By using the Fourier method, it is found that two finite difference schemes are all unconditionally stable. Finally, numerical examples are given to testify the efficiency of the numerical schemes.
出处
《应用数学与计算数学学报》
2014年第1期96-108,共13页
Communication on Applied Mathematics and Computation
基金
国家自然科学基金资助项目(11372130)
上海市教育委员会科研创新重点资助项目(12ZZ084)