期刊文献+

一类对偶平坦的黎曼度量

A Class of Dually Flat Riemannian Metrics
下载PDF
导出
摘要 给出了黎曼度量局部对偶平坦的一个充分条件:黎曼度量的Spray所满足的方程。同时,指出该条件是非必要的,并给出了相关反例。进一步,对满足条件的这类黎曼度量的性质进行了研究。具体地,讨论了这类度量成为Einstein度量的条件。从黎曼曲率着手,通过计算发现:当空间维数n3,这类黎曼度量是Einstein度量,当且仅当它是欧氏度量;但是,这个结论对n=2的情形不适用。 In this paper, a sufficient condition of locally dual flat in Riemannian space is obtained:an equation that the spray of a Riemannian metric satisfies. At the same time, the theory what this condition is not necessary is pointed out since an example is given to prove. Further research is finished to characterize the quality of this kind of Riemannian metrics. The equivalent condition that this kind of locally dually flat Riemannian metric is Einstein metrics is disussed. The quality of this kind of locally dually flat Riemannian metric is been researched to show that they are Einstein metrics. Here Riemannian curvature is main consideration. A series of computation shows that a locally dually flat Riemannian metric is Einstein metric if and only if it is Euclidian with dimen-sion n≥3 . But this is not suitable for the space with dimension n=2.
出处 《后勤工程学院学报》 2014年第2期61-64,共4页 Journal of Logistical Engineering University
基金 国家自然科学基金项目(11371386) 贵州省科学技术基金项目(黔科合J字KZL[2012]01号)
关键词 黎曼度量 局部对偶平坦 爱因斯坦度量 Riemannian metrics locally dually flat Einstein metric
  • 相关文献

参考文献7

  • 1Shen Zhong-min. Riemannian-Finsler geometry with applications to information geometry[J]. Chinese Annals Mathematics: Series B, 2008,27 ( 1 ) 79-94.
  • 2Cheng Xin-yue, Shen Zhong-min, Zhou Yu-sheng. On locally dually fiat Finsler metrics[J]. International Journal of Mathematics, 2010,21 ( 11 ) 1531-1543.
  • 3Xia Qiao-ling. On locally dually fiat-metrics [J]. Differential Geometry and Its Applications, 2011,29 (2) :233-243.
  • 4Yu Chang-tao. On dually flat Randers metrics[J]. Nonlinear Analysis, 2014,95 : 146-155.
  • 5Shen Zhong-min. Differential geometry of spray and Finsler space[M]. Dordrecht, Holland : Kluwer Academic Publishers, 2001 : 117-128.
  • 6蒋经农,周宇生.局部对偶平坦的Randers度量[J].西南师范大学学报(自然科学版),2008,33(5):34-38. 被引量:5
  • 7蒋经农.关于局部对偶平坦且具有迷向S-曲率的Matsumoto度量(英文)[J].西南师范大学学报(自然科学版),2011,36(3):48-50. 被引量:4

二级参考文献13

  • 1Zhongmin SHEN.Riemann-Finsler Geometry with Applications to Information Geometry[J].Chinese Annals of Mathematics,Series B,2006,27(1):73-94. 被引量:28
  • 2Shen Z. Projectively Flat Randers Metrics of Constant Flag Curvature [J].Math Ann, 2003, 325:19 --30.
  • 3Bao D, Robles C. On Randers Spaces of Constant Flag Curvature [J]. Rep on Math Phys, 2003, 51(1): 9 --42.
  • 4Chen X, shen Z. Randers Metrics With Special Curvature Properties [J]. Osaka J Math, 2003, 40:87 -- 101.
  • 5Berwald L. Uber die n-dimensionalen Geometrien Konstanter Krummung, indenen die Geraden die kurzesten sind[J]. Math Z, 1929, 30: 449 -469.
  • 6Cheng X, Mo X, Shen Z. On the Flag Curvature of Finsler Metrics of Scalar Curvature [J]. J London Math Soc, 2003, 68 (2): 762-- 780.
  • 7Shen Z. Differential Geometry of Spray and Finsler Space [M]. Dordrecht: Kluwer Academic Publishers, 2001.
  • 8Chern S S, Shen Z. Riemman-Finsler Gemometry [M]. Singapore: Singapore Word Scientific Publisher, 2005:36 -37.
  • 9Antonelli P, Ingarden R, Matsumoto M. The Theory of Sprays and Finsler Space with Applications in Physics and Biology [M]. Dordrecht: Kluwer Academic Publishers, 1993.
  • 10周宇生,王佳.对称的(α,β)度量的性质[J].西南大学学报(自然科学版),2007,29(11):14-17. 被引量:8

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部