期刊文献+

均匀面积映射及其在均匀纹理映射中的应用

Uniform Area Mapping and Its Application in Uniform Texture Mapping
下载PDF
导出
摘要 为形成一个具有更小拉伸的网格参数化映射,在三角形网格面片面积均匀分布的情况下,采用分两步走的均匀面积映射法。通过均质化参数域里的三角形面积,用均匀或不均匀方式有效地降低了采样稀疏问题的影响,避免了传统方法中矩阵奇异值的计算。对三角形网格,先进行均值协调参数化,然后通过一个凸组合让参数域更加均匀,得到一个拉伸较低、面积更加均匀的三角形分布,从而可以更好地取样且适合于纹理映射。通过实验和对比,可以证明在均匀纹理映射方面,均匀面积映射法比保角映射法和等积投影映射法都有明显的提高。 To get a more uniform area distribution of triangles in domain, which leads to a lower stretch, a two step method called uniform area mapping is proposed with the areas of faces equally distributed in a triangular mesh. It penalizes the undersam-pling effectively in a uniform or non,uniform way by homogenizing triangle area in the parameter domain. Thus calculating matrix singular value in the traditional methods can be avoided. Given a triangulation mesh, the authors start from mean value coordination parameterization and then make the domain more uniform through a convex combination where the weights are chosen according to the area and density of local triangles in domain. Then a more uniform area distribution of triangles in domain is get, which leads to a lower stretch. The result is well sampled and suitable for texture mapping. Experiments and comparisons are conducted so as to demonstrate that this method is obviously improved in uniform texture mapping compared with conformal or authalic mapping meth-ods and more effective than traditional stretch and minimizing methods.
出处 《后勤工程学院学报》 2014年第2期89-93,共5页 Journal of Logistical Engineering University
关键词 数字几何处理 参数化 均匀面积 纹理映射 digital geometry processing parameterization uniform area texture mapping
  • 相关文献

参考文献12

  • 1Floater M S. Parameterization and smooth approximation of surface triangulations[J]. Computer Aided Geometric Design, 1997,14 (3) :231-250.
  • 2Floater M S. Mean value coordinates[J]. Computer Aided Geometric Design, 2003,20 (3) : 19-27.
  • 3Desbrun M, Meyer M, Alliez P. Intrinsic parameterizations of surface meshes[J]. Computer Graphics Forum, 2002,21 (3) :209-218.
  • 4Meyer M, Lee H, Ban" A, et al. Generalized barycentric coordinates on irregular polygons[J]. Journal of Graphics Tools, 2002,7 ( 1 ) : 13-22.
  • 5Sander P, Snyder J, Gortler S, et al. Texture mapping progressive meshes[C]//Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. Los Angles, US : Association for Computing Machinery, 2001 : 409 -416.
  • 6Sander P, Gortler S, Wood Z, et al. Signal-specialized parameterization[C]//Proceedings of the 13th Eurographics Workshop on Rendering. Swit- zerland : Eurographics Association Aire-la-Ville, 2002 : 87-98.
  • 7Sander P V, Wood Z J, Gortler S J, et al. Multi-Chart Geometry Images[C]//Proceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing. Switzerland :Eurographics Association Aire-la-Ville, 2003:146-155.
  • 8Yoshizawa S, Belyaev A, Seidel H P. A fast and simple stretch-minimizing mesh parameterization[C]//Proceedings of the Shape Modeling Interna- tional 2004, Washington, US : IEEE, 2005 : 200-208.
  • 9Karni Z, Gotsman C, Gortler S J. Free-Boundary linear parameterization of 3D meshes in the presence of constraints[C]//Proceedings of the Inter- national Conference on Shape Modeling and Applications 2005. Washington, US : IEEE, 2005 : 266-275.
  • 10张磊,刘利刚,王国瑾.保相似的网格参数化[J].中国图象图形学报,2008,13(12):2383-2387. 被引量:9

二级参考文献29

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部