期刊文献+

基于改进Boosting算法的夜间运动车辆检测 被引量:1

Nighttime Motion Vehicle Detection Based on Improved Boosting Fuzzy Classification Algorithm
下载PDF
导出
摘要 针对夜间交通场景中运动车辆目标提取及实时检测困难的问题,引入改进的Boosting模糊分类算法,提出了一种新的基于车头灯的夜间运动车辆检测方法.通过SIFT算法和融合多特征的方法精确提取夜间运动车辆车头灯特征,利用遗传算法优化Boosting模糊分类算法,并以加权投票方式对提取的车头灯特征进行分类判别,最后结合车头灯空间、运动信息及灯光颜色信息进行同车车头灯配对分组,实现夜间运动车辆的实时检测.实验表明,该方法在夜间交通环境中具有良好的实时检测效果和较高鲁棒性. A method for nighttime motion vehicle detection based on vehicle headlights is proposed to solve the problem of motion vehicle target extraction and real-time detection in nighttime traffic scenes, which introduced an improved Boosting fuzzy classification algorithm. Firstly characteristics of the night moving vehicle headlights are precisely extracted by SIFT algorithm and multi-feature fusion method. And the classifications are determined by a Boosting fuzzy classification algorithm with weighted voting, which is optimized by genetic algorithm. Finally the car headlights are paired grouping with headlight space, motion and lighting color information to achieve real-time detection of nighttime motion vehicles. Experimental results show that the method have better robustness and real-time detection effect in the traffic environment at night.
作者 朱韶平
出处 《宁夏大学学报(自然科学版)》 CAS 2014年第1期28-32,共5页 Journal of Ningxia University(Natural Science Edition)
基金 湖南省科技计划项目(2012FJ3021) 湖南省普通高等学校教学改革研究资助项目(湘教通[2012]401号544) 湖南省重点学科建设资助项目
关键词 运动车辆检测 SIFT特征 遗传算法 Boosting模糊分类算法 motion vehicle detection SIFT character genetic algorithm Boosting fuzzy classification algo rithm
  • 相关文献

参考文献18

  • 1TAKTAK R,HUSSON R. Vehicle detection at night using image processing and pattern recognition[C]// proc of International Conference on Image Processing, Astin, Texas : IEEE, 1994 : 296-300.
  • 2CUCCHIARA R, PICCARD I. Vehicle detection under day and night illumination[C]//Proc of ISCS-IIA Spe- cial Session on Vehicle Traffic and Surveillance, ISCS- IIA, 1999 : 789-794.
  • 3CUCCHIARA R, PICCARD I, MELLO P. Image a- nalysis and rule-based reasoning for a traffic monito- ring system E J- IEEE Transactions on Inte|ligent Transportation Systems, 2000,1 (2) : 119-130.
  • 4HANZI W, DAVID S. Background subtraction based on a robust consensus method[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Los Alamitos: IEEE Computer Soc, 2006:223-226.
  • 5GAO Dashan, ZHOU Jie, Xin Leping. SVM-based detection of moving vehicles for automatic traffic moni- toring [C]//Proceedings of 2001 IEEE IntelligentTransportation Systems Con{erence, Oakland, USA: CA, 2001(8) :25-29.
  • 6FREUND Y. Boosting a weak algorithm by majority [J]. Information and Computation, 1995, 121 (2) : 256-285.
  • 7FREUND Y, SCHAPIRE R E A decision-theoretic generalization of online learning and an application to boosting[J]. Journal of Computer and System Sci- ences, 1997,55(1) :119-139.
  • 8SCHAPIRE R E. The boosting approach to machine learning: an overview [J]. Nonlinear Estimation and Classification Springer, 2002 .. 1-23.
  • 9LOWE D, Distinctive image features from scale invari- ant key points [J]. International Journal of Computer Vision,2004,60(2) :91-110.
  • 10BOSCH A, MUNOZ X. Whieh is the best way to or- ganize classify images by content[J]. Image and Vi- sion Computing, 2007,25 (6) : 778-791.

二级参考文献47

  • 1牛德姣,詹永照,宋顺林.实时视频图像中的人脸检测与跟踪[J].计算机应用,2004,24(6):105-107. 被引量:4
  • 2董乐红,耿国华,高原.Boosting算法综述[J].计算机应用与软件,2006,23(8):27-29. 被引量:26
  • 3Schafer JB, Konstan J, Riedl J. Recommender System in E-Commerce. Proceedings of the first ACM conference on Electronic Commerce. 1999:158-166.
  • 4Zadeh L A. Fuzzy Sets. Information and Control. 1965, 8:33-35.
  • 5Han JW, Karnker M. Concepts and Techniques. 2nd Edition. pp:4-6.
  • 6Friedman-Hill E. Jess in action. Manning Publications, 2003.
  • 7Orchard RA. FuzzyCLIPS version 6.04 user's guide, http:// ai.iit.nrc.ca/IR-public/fuzzy/, 1998-10-25/2000, 07 - 25.
  • 8叶中行 林建忠.数理金融[M].北京:科学出版社,2000..
  • 9CHAPELLE O’SCHOLKOPF B,ZIEN A. Semi-supervised learning [M]. Cambridge:The MIT Press,2006:213-304.
  • 10ZHU Xiao-jin,GOLDBERG A. Introduction to semi-supervised learning [J ]. Synthesis Lectures on Artificial Intelligence and Machine Learning,2009,3(1): 1-130.

共引文献17

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部