期刊文献+

具有相互干扰的捕食-食饵系统的定性分析 被引量:2

Qualitative Analysis of a Predator-prey Model with Mutual Interference
下载PDF
导出
摘要 考虑了捕食者具有相互干扰的Holling-Tanner型捕食-食饵系统,得到了正平衡态存在的条件,进而得到了正平衡态全局稳定的充分条件. A Holling-Tanner predator-prey model with mutual interference among predators was consid- ered. Firstly, the conditions of the existence of the positive equilibrium were given. Further, the sufficient conditions of the global stability of the positive equilibrium were obtained.
作者 沈柠 张树文
机构地区 集美大学理学院
出处 《集美大学学报(自然科学版)》 CAS 2014年第2期143-147,共5页 Journal of Jimei University:Natural Science
基金 国家自然科学基金资助项目(31272653 11301216)
关键词 捕食-食饵系统 平衡态 局部稳定 全局稳定 predator-prey model equilibrium solution local stability global stability
  • 相关文献

参考文献12

  • 1ZHAO Y Z. Global behavior for a diffusive predator-prey system with Holling type II functional response [ J ]. Boundary Value Problems, 2012, 2012: 111.
  • 2Feng Jian\|wen, Zen Xian\|wu College of Mathematics and Computer Sicence, Wuhan University, Wuhan 430072,China.The Global Stability of Predator-Prey System of Gause-Type with Holling Ⅲ Functional Response[J].Wuhan University Journal of Natural Sciences,2000,5(3):271-277. 被引量:1
  • 3郭改慧,吴建华.一类捕食-食饵模型正解的存在性和惟一性[J].武汉大学学报(理学版),2008,54(1):9-14. 被引量:9
  • 4ARDITI R, GINZBURG L R. Coupling in predator-prey dynamics: ratio-dependence [ J]. Journal of The Oretical Biolo- gy, 1989, 139: 311-326.
  • 5LESLIE P H, GOWER J C. The properties of a stochastic model for the predator-prey type of interaction between two spe- cies [J]. Biometrica, 1960, 47: 219-234.
  • 6CAO X T, CHEN L S. A note on the uniqueness of limit cycles in two species predator -prey system [ J ]. Ann of Diff Eqs, 1986, 2(4) : 415-417.
  • 7HSU S B, HWANG T W. Global stability for a class of predator-prey systems [J]. SIAMJ Appl Math, 1995,55: 763- 783.
  • 8HASSEL M P. Metual interference between searching insect parasites [J]. Anita Ecol, 1971, 40: 473-486.
  • 9LESLIE P H. Some further notes on the use of matrices in population mathematics [ J]. Biometrika, 1948, 35: 213- 245.
  • 10郭红建.一类具有相互干扰的两种群捕食系统[J].信阳师范学院学报(自然科学版),2006,19(3):255-257. 被引量:5

二级参考文献33

  • 1贺云,陈斯养.广义特征方程及正解的存在性[J].云南师范大学学报(自然科学版),2006,26(1):6-10. 被引量:2
  • 2柳合龙,郑丽丽.带有脉冲免疫和脉冲隔离SIQV传染病模型的全局结论[J].信阳师范学院学报(自然科学版),2005,18(4):381-383. 被引量:6
  • 3陈兰孙.数学生态学模型与研究方法[M].北京:科学出版社,1998:114-119.
  • 4HE Y, CHEN Si-yang. The Qualitative Analysis a Class of Two Species Predator-Prey Perturbed Model [ C ] //Proceeding of the 3^rd International Conference on Impulsive Dynamic Systems and Applications,2006:383-385.
  • 5戴国仁.Kolmogorov捕食者一食饵系统的定性分析.应用数学学报,1988,11(4):444-456.
  • 6CAO Xian-tong,CHEN Lan-sun. A note on the uniqueness of limit cycles in two species Predator-prey system [ J]. Ann of Diff Eqs,1986,2(4) :415-417.
  • 7ZHANG Zhi-fen. Proof of the uniqueness theorem of limit cycles of generalized Lienard equation [ J ]. Appl Anal, 1986,23:63-76.
  • 8LIU Xianning,CHEN Lansun.Complex Dynamics of Holling II Lotka-Voltrra Predator-prey System with Impulsive Perturbations on the Predator[J].Chaos,Solitons and Fractals(S 0960-0779),2003,16:311-320.
  • 9LIU Bing,ZHANG Yujuan,CHEN Lansun.Dynamic Complexities of a Holling I Predator-prey Model Concerning Biological and Chemical Control[J].Chaos,Solitons and Fractals(S 0960-0779),2004,22:123-34.
  • 10ZHANG Shuwen,DONG Lingzhen,CHEN Lansun.The Study of Predator-prey with Defensive Ability of Prey and Impulsive Perturbations on the Predator[J].Chaos,Solitons and Fractals(S 0960-0779),2005,23:631-43.

共引文献14

同被引文献13

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部