期刊文献+

柴油机振动信号盲分离组合算法 被引量:6

Combination algorithm for blind separation of diesel engine vibration signal
下载PDF
导出
摘要 由于机械系统的振动信号能有效反映系统特征,对其进行盲解卷积能提供由混合信号中分离出源信号的可能性,为此提出机械系统振动卷积模型;将多通道盲最小均方差与缩减盲源方法结合提出MBLMS-TDS组合算法,且利用该算法对卷积混合信号进行盲解卷积验证算法的合理性;用该算法对柴油机表面混合振动信号进行分离,获得活塞撞击缸体信号与柴油机燃烧信号。 The mechanical system vibration signals effectively reflect the characteristics of the system and its blind deconvolution can provide the possibility of separation of source signals from mixed signals.A convolution model of the mechanical system vibration was proposed and the method of Multi-Channel Blind Least Mean Squares was combined with the method of Deflation Source so as to form the MBLMS-TDS algorithm.For verifing the reasonableness of the algorithm, it was applied in the blind deconvolution of some simulated mixed sources.As a practical example,the piston-slap signal and combustion signal of a diesel engine were extracted from the mixed vibration signal on the surface of the diesel engine piston by using the MBLMS-TDS algorithm.
出处 《振动与冲击》 EI CSCD 北大核心 2014年第6期44-47,52,共5页 Journal of Vibration and Shock
基金 吉林省科技发展计划项目(201205021)
关键词 盲源分离 卷积模型 MBLMS-TDS算法 柴油机 blind source separation convolution model MBLMS-TDS algorithm diesel engine
  • 相关文献

参考文献4

二级参考文献32

  • 1胥永刚,张发启,何正嘉.独立分量分析及其在故障诊断中的应用[J].振动与冲击,2004,23(2):104-107. 被引量:46
  • 2郝志勇,韩军.Identification of diesel front sound source based on continuous wavelet transform[J].Journal of Zhejiang University Science,2004,5(9):1069-1075. 被引量:8
  • 3石庆研,黄建宇,吴仁彪.盲源分离及盲信号提取的研究进展[J].中国民航大学学报,2007,25(3):1-7. 被引量:10
  • 4杨宗凯.实用小波分析[M].西安:西安电子科技大学出版社,1998..
  • 5Ypma A, Leshem A,Duin R P W. Blind separation of rotating machine sources: bilinearforms and convolutive mixtures [ R]. Neurocomputing-special Issue on ICA/BSS,2002.
  • 6Amari S, Douglas S C, Cichocki A, et al. Multichannel Blind Deconvolution and Equalization Using the Natural Gradient [ R]. Proc. 1st IEEE signal processing workshop on signal processing advances in wireless communications, Paris, Frances, April 16 - 18,1997,101 - 104.
  • 7Li W,Gu F,Ball A D,et al. A study of the noise from diesel engines using the independent component analysis [ J ]. Mechanical System and Signal Processing, 2001,15 ( 6 ) : 1165 - 1184,.
  • 8Liu Xianhua. Blind source separation methods and their mechanical applications [ D ]. Sydeny: PhD dissertation of UNSW, 2006.
  • 9Simon Haykin. Unsupervised Adaptive Filtering Volume I: Blind Source Separation [ M ]. New york: John Wiley and Sons ,2000.
  • 10Liu Xianhua, Randall R B. Blind source separation of internal combustion engine piston slap from other measured vibration signals [ J ]. Mechanical System and Signal Processing,2005, 19:1196 - 1208.

共引文献20

同被引文献45

  • 1罗志增,徐斌.基于小波消噪和盲源分离的脑电信号处理方法[J].华中科技大学学报(自然科学版),2011,39(S2):157-160. 被引量:4
  • 2骆德渊,任雅萍,陈文艺,谭玉山.双频激光多谱勒扭转振动测试仪的研究[J].激光与红外,1997,27(1):19-22. 被引量:2
  • 3Leung C, Siu W. A General Contrast Function Based Blind Source Separation Method for Convo- lutively Mixed Independent Sources[J]. Signal Processing, 2007, 87(1) :107-123.
  • 4Pendharkar G, Naik G R, Nguyen H T. Using Blind Source Separation on Accelerometry Data to Analyze and Distinguish the Toe Walking Gait From Normal Gait in ITW Children[J]. Biomedical Signal Processing & Control, 2014, 13(5):41 49.
  • 5Donoho D L. De-noising by Soft-thresholding[J]. IEEE Transactions on Information Theory, 1995, 41(3) : 613-627.
  • 6V-zquez R R, Velez-Perez H, Ranta R, et al.Blind Source Separation, Wavelet Denoising and Dis- criminant Analysis for EEG Artefacts and Noise Cancelling [J]. Biomedical Signal Processing Control, 2012, 7(4):389-400.
  • 7Zhang H B, Xu P F. Convolutive Blind Source Separation Based on Wavelet De-noising[J]. Ad- vanced Materials Research, 2013,756-759: 3356- 3361.
  • 8Gao HongYe, Bruce A G. Waveshrink with Semi- soft Shrinkage. StatSci Research Report[R]. Seat- tle: StatSci Division of MathSoft, Inc., 1995.
  • 9Hyvarinen A, Oja E.A Fast Fixed-point Algorithm for Independent Component Analysis [J]. Neural Computation, 1997, 9(7) :1483-1492.
  • 10吴虎胜,吕建新,吴庐山,王茂生.基于EMD和SVM的柴油机气阀机构故障诊断[J].中国机械工程,2010,21(22):2710-2714. 被引量:19

引证文献6

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部