期刊文献+

流水线型局部加权回归RFID室内定位 被引量:8

Pipelined RFID Indoor Positioning Based on Locally-Weighted Regression
下载PDF
导出
摘要 射频识别技术(radio frequency identification,RFID)以其非接触、非视距、低成本及高精度等优点成为室内定位技术的研究热点.为了加强信号稳定性并提高实时性,该文用流水线方式接收到的包信息作为定位信号参数,针对室内环境对信号传播影响的复杂性,提出了流水线型局部加权回归定位算法,将室内环境对信号传播到各位置的影响融合进算法,以实现精确定位.实验表明,对于室内定位,所提出的基于RFID技术的流水线型局部加权回归定位算法相对于经典的LANDMARK算法和VIRE算法,定位精度分别提高56.56%和36.73%.在多目标的情况下,也可以实现实时精确的定位跟踪,具有良好的实用价值和应用前景. Radio frequency identification (RFID) is a hot research topic for indoor positioning because it is non-contact and non-line-of-sight with low-cost and high-precision. This paper proposes to use the pipelined packet reception rate as the positioning parameters to enhance stability and improve real-time performance. To deal with the indoor environmental impact on the signal propagation, the pipelined positioning algorithm uses locally weighted regression, which takes full advantage of the indoor environment information to achieve precise positioning. Experimental results show that, for indoor applications, the proposed algorithm increases the positioning accuracy by 56.56% compared with LANDMARK and by 36.73% compared with VIRE. The method can also obtain precise real-time tracking results for multiple targets, showing its practical value and wide range of applications.
出处 《应用科学学报》 CAS CSCD 北大核心 2014年第2期125-132,共8页 Journal of Applied Sciences
基金 上海市教委重点学科资助项目基金(No.J50104) 上海市科委资助项目基金(No.08706201000 No.08700741000)
关键词 室内定位 射频识别 局部加权回归 流水线 收包率 indoor positioning, radio frequency identification (RFID), locally weighted regression, pipeline,packet reception rate
  • 相关文献

参考文献12

  • 1ZHOU J H, GILMAN E, YLIANTTILA M, RIEKKI J. Pervasive service computing: visions and challenges [C]//IEEE International Conference on Computer and Information Technology (CIT), 2010: 1335- 1339.
  • 2DEDES G, DEMPSTER A G. Indoor GPS positioning- challenges and opportunities [C]//Vehicular Technol- ogy Conference, 2005: 412-415.
  • 3闫保中,张帅,张宇.基于RFID的室内人员定位系统的设计与实现[J].应用科技,2011,38(11):39-42. 被引量:7
  • 4SAAD S S, NAKAD Z S A. Standalone RFID in- door positioning system using passive tags [J]. IEEE Transactions on Industrial Electronics, 2011, 58 (5) : 1961-1970.
  • 5JIN Guangyao, Lu Xiaoyi. An indoor localization mechanism using active RFID tag [C]//Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing, 2006.
  • 6ZHU Fengjuan, WE1 Zongheng, HU Binjie, CHEN Jianguang, Guo Zimin. Analysis of indoor positioning approaches based on active RFID [C]//International Conference on Wireless Commu- nications, Networking and Mobile Computing, 2009: 1-4.
  • 7WANG C, Wu H Y, TZENC N F. RFID-based 3- D positioning schemes [C]//IEEE International Con- ference on Computer Communications, 2007: 1235- 1243.
  • 8PARK Y S, LEE J W, KIM S W. Improving posi- tion estimation on RFID tag floor localization using RFID reader transmission power control [C]//IEEE International Conference on Robotics and Biomimet- ics, 2009: 1716-1721.
  • 9DHANANJAY L, MANJESHWAR, A HERR,MANN F UYSAL-BIYIKOGLU E, KESHAVARZIAN A. Measurement and characterization of link qual- ity metrics in energy constrained wireless sensor networks [Cl//Global Telecommunications Confer- ence, 2003: 446-452.
  • 10KHOSHGOFTAAR T M, PANDYA A S, LANNING G D L. Application of neural networks for predicting de- fects [J]. Annals of Software Engineering, 1995, 1(1): 141-154.

二级参考文献3

  • 1徐凤燕,石鹏,王宗欣.基于参数拟合的距离—损耗模型室内定位算法[J].电路与系统学报,2007,12(1):1-5. 被引量:10
  • 2JIN Guangyao, LU Xiaoyi. An indoor localization mechanism using active RFID tag [C]// Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trust-worthy Computing. Seoul, Korea, 2007: 3943.
  • 3DEITEL H M. C# for experienced programmers [M]. Beijing: Publishing House of Electronics Industry, 2003:145 -208.

共引文献6

同被引文献129

引证文献8

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部