期刊文献+

理赔量具有一阶自回归结构的离散时间风险模型的破产问题 被引量:4

Ruin Problems for the Discrete Time Insurance Risk Model with AR(1) Claim Sizes
下载PDF
导出
摘要 在理赔量具有一阶自回归的情形下,讨论修正的经典的离散时间风险模型。利用递推形式和数学归纳法得出了破产前盈余的分布,破产前最大盈余的分布,以及破产前盈余、破产后赤字、破产前最大盈余的联合分布的递推式。 The modified classical discrete time insurance risk model with AR(1) claim sizes was discussed. Using recursive method and mathematical induction, recursive expressions about the distribution of surplus before ruin and maximum surplus before ruin, as well as the recursive expressions of the joint distribution of surplus before ruin, deficit after ruin, and the maximum surplus before ruin were derived.
出处 《上海第二工业大学学报》 2014年第1期61-66,共6页 Journal of Shanghai Polytechnic University
关键词 离散时间风险模型 一阶自回归 破产前盈余 破产前最大盈余 破产后赤字 分布 discrete time insurance risk model AR(1) surplus before ruin maximum surplus before ruin deficit after ruin distribution
  • 相关文献

参考文献13

二级参考文献29

  • 1Bowers N L, Gerber H U, Hickman J C, et al. Actuarial mathematies[M]. Itasca, IL: Society of Actuaries, 1986: 8-24.
  • 2Yang H. Non-exponential bounds for ruin probability with interest effect included[J]. Scandinavian Actuarial Journal, 1999,(1):66-79.
  • 3Cai J. Discrete time risk models under rates of interest [J]. Prob Eng Inf Sci, 2002116 (3) : 309- 324.
  • 4鲍尔斯NL.风险理论[M].郑韫瑜,余跃年,译.上海:上海科学技术出版社,2001:25-110.
  • 5Kellision S G.利息理论[M].尚汉冀,译.上海:上海科学技术出版社,1995:25-46.
  • 6Asmussen S. Ruin probabilities [M]. Singapore: World Scientific, 2002 : 6- 20.
  • 7Sundt B, Teugels J L. Ruin estimates under interest force [J]. Insurance Math Econom, 1995,16(1) : 7-22.
  • 8[1]Bowers N L,Gerber H U,Hickman J C,et al.Actuarial mathematics,society of actuaries.Itasca,IL,1986
  • 9[2]Cai J.Discrete time risk models under rates of interest.Prob Eng Inf Sci,2002; 16(4):312-323
  • 10[3]Yang H.Non-exponential bounds for ruin probability with interest effect included.Scandinavian Actuarial Journal,1999;1:66-79

共引文献33

同被引文献38

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部