期刊文献+

酿酒酵母乙酸耐性分子机制的功能基因组进展 被引量:20

Advances in functional genomics studies underlying acetic acid tolerance of Saccharomyces cerevisiae
原文传递
导出
摘要 提高工业酿酒酵母对高浓度代谢产物及原料中的毒性底物等环境胁迫因素的耐受性,对提高工业生产效率具有重要的意义。乙酸是纤维素原料水解产生的主要毒性副产物之一,其对酵母细胞的生长和代谢都具有较强的抑制作用,因此,对酿酒酵母乙酸耐性分子机制的研究可为选育优良菌种提供理论依据。近年来,通过细胞全局基因表达分析和代谢组分析,以及对单基因敲除的所有突变体的表型组研究,对酿酒酵母乙酸耐性的分子机制有了更多新的认识,揭示了很多新的与乙酸毒性适应性反应和乙酸耐性提高相关的基因。综述了近年来酿酒酵母乙酸耐性的基因组规模的研究进展,以及在此基础上构建乙酸耐性提高的工业酵母菌的代谢工程操作。结合本课题组的研究,对金属离子锌在酿酒酵母乙酸耐性中的作用进行了深入分析。未来对酿酒酵母乙酸耐性分子机理的认识及改造将深入到翻译后修饰和合成生物学等新的水平,所获得的认知,将为选育可高效进行纤维素原料生物转化、高效生产生物燃料和生物基化学品的工业酿酒酵母的菌株奠定理论基础。 Industrial microorganisms are subject to various stress conditions, including products and substrates inhibitions. Therefore, improvement of stress tolerance is of great importance for industrial microbial production. Acetic acid is one of the major inhibitors in the cellulosic hydrolysates, which affects seriously on cell growth and metabolism of Saccharomyces cerevisiae. Studies on the molecular mechanisms underlying adaptive response and tolerance of acetic acid of S. cerevisiae benefit breeding of robust strains of industrial yeast for more efficient production. In recent years, more insights into the molecular mechanisms underlying acetic acid tolerance have been revealed through analysis of global gene expression and metabolomics analysis, as well as phenomics analysis by single gene deletion libraries. Novel genes related to response to acetic acid and improvement of acetic acid tolerance have been identified, and novel strains with improved acetic acid tolerance were constructed by modifying key genes. Metal ions including potassium and zinc play important roles in acetic acid tolerance in S. cerevisiae, and the effect of zinc was first discovered in our previous studies on flocculating yeast. Genes involved in cell wall remodeling, membrane transport, energy metabolism, amino acid biosynthesis and transport, as well as global transcription regulation were discussed. Exploration and modification of the molecular mechanisms of yeast acetic acid tolerance will be done further on levels such as post-translational modifications and synthetic biology and engineering; and the knowledge obtained will pave the way for breeding robust strains for more efficient bioconversion of cellulosic materials to produce biofuels and bio-based chemicals.
出处 《生物工程学报》 CAS CSCD 北大核心 2014年第3期368-380,共13页 Chinese Journal of Biotechnology
基金 国家高技术研究发展计划(863计划)(Nos.2012AA021205 2012AA101805) 教育部新世纪优秀人才支持计划(No.NCET-11-0057) 国家自然科学基金(No.21376043)资助~~
关键词 酿酒酵母 乙酸耐性 燃料乙醇 分子机制 功能基因组 Saccharomyces cerevisiae, acetic acid tolerance, fuel ethanol, molecular mechanisms, functional genome
  • 相关文献

参考文献41

  • 1Zhao XQ, Bai FW. Mechanisms of yeast ethanol tolerance and its manipulation for efficient fuel ethanol production. J Biotechnol, 2009, 144(1): 23-30.
  • 2李洪兴,张笑然,沈煜,董永胜,鲍晓明.纤维素乙醇生物加工过程中的抑制物对酿酒酵母的影响及应对措施[J].生物工程学报,2009,25(9):1321-1328. 被引量:30
  • 3郝学才,门珣,张宜,杨非,曹萌,翟冬梅,田沈.酿酒酵母在纤维素乙醇生产中对毒性化合物的耐受机理研究进展[J].微生物学通报,2012,39(2):254-263. 被引量:5
  • 4Hasunuma T, Kondo A. Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering. Biotechnol Adv, 2012, 30(6): 1207-1218.
  • 5林贝,赵心清,葛旭萌,白凤武.玉米秸秆酸解副产物对重组酿酒酵母6508-127发酵的影响[J].中国生物工程杂志,2007,27(7):61-67. 被引量:33
  • 6Mills TY, Sandoval NR, Gill RT. Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol Biofuels, 2009, 2(26): 1-11.
  • 7徐桂红,赵心清,李宁,白凤武.锌离子提高絮凝酵母乙酸胁迫耐受性[J].化工学报,2012,63(6):1823-1829. 被引量:12
  • 8Bajwa PK, Ho CY, Chan CK, et al. Transcriptional profiling of Saccharomyces cerevisiae T2 cells upon exposure to hardwood spent sulphite liquor: comparison to acetic acid, furfural and hydroxymethylfurfural. Antonie van Leeu, 2013, 103: 1281-1295.
  • 9Mollapour M, Piper PW. Hogl mitogen-activated protein kinase phosphorylation targets the yeast Fpsl aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid. Mol Cell Biol, 2007, 27(18): 6446-6456.
  • 10Paiva S, Devaux F, Barbosa S, et al. Ady2p is essential for the acetate permease activity in the yeast Saccharomyces cerevisiae. Yeast, 2004, 21(3): 201-210.

二级参考文献86

共引文献74

同被引文献152

引证文献20

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部