4BAKER A. The Diophantine Equation y^2 = ax^3 + bx^2 + cx +d [J]. J London Math Soc, 1968, 43(1) : 1 - 9.
5STROEKER R J, TZANAKIS N. Solving Elliptic Diophantine Equations by Estimating Linear Forms in Elliptic Logarithms[J]. ActaArith, 1994, 67(2): 177-196.
6STROEKER R J, TZANAKIS N. Computing All Integer Solutions of a Genus 1 Equation[J]. Math Comp, 2003, 72(9): 1917 - 1933.
7QIU De-rong, ZHANG Xian-ke. Mordell-Weil Groups and Selmer Groups of Twin-Prime Elliptic Curves[J]. Sci China: Ser A, 2002, 45(11) : 1372 - 1380.
8WALSH G. A Note on a Theorem of Ljunggren and the Diophantine Equations, x^2-kxy^2+y^4 = 1, 4 [J]. Arch Math, 1999, 73(2): 119-125.