期刊文献+

Frontiers of Plasmonics 被引量:1

Frontiers of Plasmonics
原文传递
导出
摘要 Plasmonics, an important branch of nanooptics, has seen its prosperous development and exciting applications during the past years [1 3]. Surface plasmons (SPs), the light-driven collective oscillation of free electrons in metals, include the localized type (localized surface plasmons, LSPs) and propagating type (surface plasmon polaritons, SPPs). The most charming characteristics of SPs are the strong confinement of electromagnetic (EM) field (and thus EM enhancement) and long range propagation of EM energy (in case of SPPs). Based on these characters, intriguing applications in many fields have been found, for example, single molecule spectroscopy using surface- enhanced Raman scattering (SERS) [4-7], ultrasensitive detection of chemical and biological species using localized surface plasmon resonance (LSPR) sensor [8, 9], spaser that stems from the amplification of resonant SPs in the cavity of metal nanostructures [10-12], superlens that utilizes the sub-wavelength concentration of SPs [13, 14], and plasmonic circuits that are based on the propagation modulation of SPPs [15-17]. Plasmonics, an important branch of nanooptics, has seen its prosperous development and exciting applications during the past years [1 3]. Surface plasmons (SPs), the light-driven collective oscillation of free electrons in metals, include the localized type (localized surface plasmons, LSPs) and propagating type (surface plasmon polaritons, SPPs). The most charming characteristics of SPs are the strong confinement of electromagnetic (EM) field (and thus EM enhancement) and long range propagation of EM energy (in case of SPPs). Based on these characters, intriguing applications in many fields have been found, for example, single molecule spectroscopy using surface- enhanced Raman scattering (SERS) [4-7], ultrasensitive detection of chemical and biological species using localized surface plasmon resonance (LSPR) sensor [8, 9], spaser that stems from the amplification of resonant SPs in the cavity of metal nanostructures [10-12], superlens that utilizes the sub-wavelength concentration of SPs [13, 14], and plasmonic circuits that are based on the propagation modulation of SPPs [15-17].
出处 《Frontiers of physics》 SCIE CSCD 2014年第1期1-2,共2页 物理学前沿(英文版)
  • 相关文献

参考文献6

二级参考文献349

  • 1K. A. Willets and R. P. Van Duyne, Localized surface plas- mon resonance spectroscopy and sensing, Annu. Rev. Phys. Chem., 2007, 58(1): 267.
  • 2N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlan- der, Plasmons in strongly coupled metallic nanostructures, Chem. Rev., 2011, 111(6): 3913.
  • 3J. A. Dionne and H. A. Atwater, Plasmonics: Metal-worthy methods and materials in nanophotonics, MRS Bull., 2012, 37(8): 717.
  • 4S. Lal, J. H. Hafner, N. J. Halas, S. Link, and P. Nordlan- der, Noble metal nanowires: From plasmon waveguides to passive and active devices, Acc. Chem. Res., 2012, 45(11): 1887.
  • 5S. A. Muier, Plasmonics: Metal nanostruetures for subwave- length photonic devices, IEEE J. Sel. Top. Quantum Elec- tron., 2006, 12(6): 1214.
  • 6M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myrosh- nychenko, F. J. Garcla de Abajo, and R. Quidant, Nano- optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas, Nano Lett., 2009, 9(10): 3387.
  • 7K. C. Toussaint, M. Liu, M. Pelton, J. Pesic, M. J. Guffey, P. Cuyot-Sionnest, and N. F. Scherer, Plasmon resonance- based optical trapping of single and multiple Au nanoparti- cles, Opt. Express, 2007, 15(19): 12017.
  • 8A. J. Haes, C. L. Haynes, A. D. McFarland, G. C. Schatz, R. P. van Duyne, and S. Zou, Flasmonic materials for surface- enhanced sensing and spectroscopy, MRS Bull., 2005, 30(5): 368.
  • 9R. S. Golightly, W. E. Doering, and M. J. Natan, Surface- enhanced Raman spectroscopy and homeland security: A perfect match? ACS Nano, 2009, 3(10): 2859.
  • 10P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, Surface-enhanced Raman spectroscopy, Annu. Rev.Anal. Chem.2008. 1(1): 601.

共引文献11

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部