期刊文献+

具有负压力的Aw-Rascle交通流的Riemann问题 被引量:1

The Riemann Problem for the Aw-Rascle Traffic Flow Model with Negative Pressure
下载PDF
导出
摘要 研究了广义Chaplygin气体的Aw-Rascle交通流的Riemann问题,构建了它的古典和非古典Riemann解.借助广义Rankine-Hugoniot关系和δ-激波熵条件,获得了δ-激波解的存在性和唯一性,并且给出一些数值模拟来阐明此分析. This paper deals with the Riemann problem for the Aw-Rascle traffic flow model with the generalized Chaplygin gas and construct the classical and nonclassical solutions. Under the generalized Rankine-Hugoniot relation and δ-entropy condition, the author ob- tains the existence and uniqueness of δ-shock solutions and presents some numerical simu- lations to illustrate the analysis.
作者 王国栋
出处 《数学年刊(A辑)》 CSCD 北大核心 2014年第1期73-82,共10页 Chinese Annals of Mathematics
基金 安徽省教育厅自然科学重点基金(No.KJ2012A055)的资助
关键词 Aw—Rascle交通流 广义Chaplygin气体 δ-激波 Aw-Rascle traffic flow, Generalized Chaplygin gas, δ-shock wave
  • 相关文献

参考文献32

  • 1Aw A, Klar A, Materne A, Rascle M. Derivation of continuum traffic flow models from microscopic follow-the-leader model [J]. SIAM J Appl Math, 2002, 63:259-278.
  • 2Aw A, Rascle M. Resurrection of "second order" models oftraffic flow [J]. SIAM J Appl Math, 2000, 60:916-938.
  • 3Shen C, Sun M. Formation of 6 shocks and vacuum states in the vanishing pressure limit of Riemann solutions to the perturbed Aw-Rascle model [J]. J Diff Equ, 2010, 249:3024-3051.
  • 4Sun M. Interactions of elementary waves for Aw-Rascle model [J]. SIAM J Appl Math, 2009, 69: 1542-1558.
  • 5Bento C M, Bertolami O, Sen A A. Generalized Chaplygin gas, accelerated expansion, and dark-energy-matter unification [J]. Phys Rev D, 2002, 66, 043507.
  • 6Gorini V, Kamenshchik A, Moschella U. The chaplygin gas as a model for dark energy [C]. Singapore: World Scientific, 2005.
  • 7Chaplygin S. On gas jets [J]. Sci Mem Moscow Univ Math Phys, 1904, 21:1-12l.
  • 8Tsien H S. Two dimensional subsonic flow of compressible fluids [J]. J Aeron Sci, 1939, 6:399-407.
  • 9von Karman T. Compressibility effects in aerodynamics [J]. J Aeron Sci, 1941, 8:337- 365.
  • 10Brenier Y. Solutions with concentration to the Riemann problem for one-dimensional Chaplygin gas equations [J]. J Math Fluid Mech, 2005, 7:S326-S33l.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部