期刊文献+

新型低维结构锑化物红外探测器的研究与挑战 被引量:9

Development of high-performance novel low-dimensional structure antimonide infrared FPAs: challenges and solutions
原文传递
导出
摘要 红外光电探测器已经历了半个多世纪的发展,先后出现了机械扫描式单元及线列探测器和凝视型红外焦平面探测器两代探测器技术,并形成了一个庞大的红外探测器器件家族.近年来人们逐渐提出了以高探测率、大面阵、低成本、多光谱为技术特点的第三代红外探测器概念.锑化物红外探测材料以其具备的优越光电性能:量子效率高,暗电流小,微带带隙可调,均匀性高、成本低等,成为第三代红外焦平面探测器的最优选材料.本文回顾了近年来国内外第三代红外探测器材料与器件的研究发展历程,重点阐明了锑化物II类超晶格红外探测材料在技术上的优势及其国内外发展现状.通过分析个多个重点研究机构的技术发展历程,阐明了锑化物材料与器件研究的发展趋势,面临的挑战以及今后数年内该领域的研究重点. Infrared photodetectors and technology have experienced half a century of development. Two generation detectors have appeared: the first generation is mechanical scanning unit or linear array detectors, the second-generation is staring focal plane array detectors. It has formed a huge family of infrared detectors. Recent years, people gradually raised to the technical concept of third-generation infrared detectors which have high detecivity, large formate, low-cost,and multi-spectral response. Antimonide based type-II InAs/GaSb superlattice has several fundamental properties that make it suitable for third-generation infrared detection technology: high quantum efficiency, low dark current density, tunable bandgap, high uniformity, and low cost. In this paper, we review the recent domestic and international research in third-generation infrared detector material and devices, and we focus on clarifying advantages of antimonide based type II superlattice material and the development status at home and abroad. By analyzing the technology development process in a number of key research institutions, we hope to clarify the challenges and research trends of antimonide material in the next few years.
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2014年第4期368-389,共22页 Scientia Sinica Physica,Mechanica & Astronomica
基金 国家重大科学研究计划(编号:2013CB932904 2011CB922201) 国家自然科学基金(批准号:61290303 61274013 61306013)资助项目
关键词 锑化物 6 1A族材料 II类超晶格 红外探测器 焦平面 量子阱 antimonide material, 6.1 A famliy, InAs/GaSb superlattices, infrared detector, FPA, quantum wells
  • 相关文献

参考文献1

二级参考文献16

  • 1Bracker A S, Yang M J, Bennett B R, Culbertson J C and Moore W J 2000 J. Cryst. Growth 220 384.
  • 2Nguyen B M, Hoffman D, Huang E K, Bogdanov S, Delau- nay P Y, Razeghi M and Tidrow M Z 2009 Appl. Phys. Lett. 94 223506.
  • 3Smith D L and Mailhiot C 1990 Rev. Mod. Phys. 62 173.
  • 4Delaunay P Y, Nguyen B M, Hoffman D, Huang E K W and Razeghi M 2009 IEEE J. Quantum Electron. 45 157.
  • 5Huang E K, Hoffman D, Nguyen B M, Delaunay P Y and Razeghi M 2009 Appl. Phys. Lett. 94 053506 Nathan V and Razeghi M 2007 Proc. SPIE 6542 654209.
  • 6Nathan V and Razeghi M 2007 Proc. SPIE 6542 654209.
  • 7Nguyen B M, Hoffman D, Huang E K, Delaunay P Y and Razeghi M 2008 Appl. Phys. Lett. 93 123502.
  • 8Cabanski W, Eberhardt K, Rode W, Wendler J, Ziegler J, Fleissner J, Fuchs F, Rehm R, Sehmitz J, Schneider H and Walther M 2004 Proc. SPIE 5406 184.
  • 9Cabanski W, Munzberg M, Rode W, Wendler J, Ziegler J, Fleissner J, Fuchs F, Rehm R, Schmitz J, Schneider H and Walther B 2005 Proe. SPIE 5783 340.
  • 10Rehm R, Schmitz J, Fleissner J, Walther M, Ziegler J, Cabanski W and Breiter R 2005 Phys. Status Solidi C 3 435.

共引文献4

同被引文献52

引证文献9

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部