期刊文献+

Function projective lag synchronization of fractional-order chaotic systems 被引量:3

Function projective lag synchronization of fractional-order chaotic systems
原文传递
导出
摘要 Function projective lag synchronization of different structural fractional-order chaotic systems is investigated. It is shown that the slave system can be synchronized with the past states of the driver up to a scaling function matrix. According to the stability theorem of linear fractional-order systems, a nonlinear fractional-order controller is designed for the synchronization of systems with the same and different dimensions. Especially, for two different dimensional systems, the synchronization is achieved in both reduced and increased dimensions. Three kinds of numerical examples are presented to illustrate the effectiveness of the scheme. Function projective lag synchronization of different structural fractional-order chaotic systems is investigated. It is shown that the slave system can be synchronized with the past states of the driver up to a scaling function matrix. According to the stability theorem of linear fractional-order systems, a nonlinear fractional-order controller is designed for the synchronization of systems with the same and different dimensions. Especially, for two different dimensional systems, the synchronization is achieved in both reduced and increased dimensions. Three kinds of numerical examples are presented to illustrate the effectiveness of the scheme.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第4期171-177,共7页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China(Grant No.11371049) the Science Foundation of Beijing Jiaotong University(Grant Nos.2011JBM130 and 2011YJS076)
关键词 fractional order CHAOS function projective lag synchronization fractional order, chaos, function projective lag synchronization
  • 相关文献

参考文献45

  • 1Pecora L M and Carroll T L 1990 Phys.Rev.Lett.64 821.
  • 2Pecora L M and Carroll T L 1991 Phys.Rev.A 44 2374.
  • 3Chen G and Dong X 1998 From Chaos to Order: Methodologies,Perspectives and Applications (Singapore: World Scientific).
  • 4Yu H T,Wang J,Deng B,Wei X L and Chen Y Y 2013 Chin.Phys.B 22 058701.
  • 5Huang J J,Li C D,Zhang W and Wei P C 2012 Chin.Phys.B 21 090508.
  • 6Lu J F 2008 Commun.Nonlinear Sci.Numer.Simul.13 1851.
  • 7Fu J,Yu M and Ma T D 2011 Chin.Phys.B 20 120508.
  • 8Mahmoud G M and Mahmoud E E 2012 Nonlinear Dyn.67 1613.
  • 9Wang G,Shen Y and Yin Q 2013 Chin.Phys.B 22 050504.
  • 10Tang R A,Liu Y L and Xue J K 2009 Phys.Lett.A 373 1449.

同被引文献20

  • 1龙敏,丘水生.Application of periodic orbit theory in chaos-based security analysis[J].Chinese Physics B,2007,16(8):2254-2258. 被引量:3
  • 2赵磊,郑永爱.基于模糊观测器混沌系统的广义投影同步[J].控制工程,2007,14(6):622-624. 被引量:2
  • 3刘崇新.一个超混沌系统及其分数阶电路仿真实验[J].物理学报,2007,56(12):6865-6873. 被引量:74
  • 4Charef A,Sun Y Y,Tsao Y Y,et al.Fractal system as represented by singularity function[J].IEEE Transaction on Automatic Control,1992,37(9):1465-1470.
  • 5Ge Zhengming,Qu Chanyi.Chaos in a fractional order modified Duffing system[J].Chaos Solitons&Fractals,2007,34(2):262-291.
  • 6Li Chunguang,Chen Guanrong.Chaos and hyperchaos in the fractional-order R?ssler equations[J].Physica A:Statistical Mechanics and its Applications,2004,341∶55-61.
  • 7Grigorenko I,Grigorenko E.Chaotic dynamics of the fractional Lorenz system[J].Physical Review Letters,2003,91(3):034101-1-034101-4.
  • 8Han Qiang,Liu Chongxin,Sun Lei,et al.A fractional order hyperchaotic system derived from Liu system and its circuit realization[J].Chinese Physics B,2013,22(2):020502-1-020502-6.
  • 9Jia Hongyan,Chen Zengqiang,Qi Guoyuan.Topological horseshoe analysis and circuit realization for a fractionalorder Lüsystem[J].Nonlinear Dynamics,2013,74(1/2):203-212.
  • 10Wang Junwei,Ma Qinghua,Zeng Li.Observer-based synchronization in fractional-order leader:Follower complex networks[J].Nonlinear Dynamics,2013,73(1/2):921-929.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部