期刊文献+

鲁棒的车载摄像头对向车辆检测与跟踪方法 被引量:3

Robust on-board camera on-coming vehicle detection and tracking method
原文传递
导出
摘要 在智能交通领域,越来越多的新兴应用场景如移动式的车流量统计系统和电子收费系统需要通过车载设备采集并分析视频数据。因此,一种有效、快速的车载摄像头对向车辆检测与跟踪方法具有重要意义。该文针对车载摄像头对向车辆检测与跟踪问题通过选择与当前路段环境匹配的车辆模式,动态应对对向车辆的表观变化(如在路段或摄像机参数发生变化时视角以及截断情形的改变),同时避免提高算法的单帧检测时间。实验结果表明:该方法能够实时、有效地检测并跟踪对向车辆。 Intelligent transportation systems will involve many new applications such as mobile traffic flow monitoring systems and mobile electronic tolling systems which require video analysis methods using on-board systems. Effective on coming vehicle detection and tracking systems using on board cameras will be very important. This study analyzes the various vehicle appearances for on-coming vehicle detection and tracking systems for different road environments, camera parameters, views and truncations of the vehicle. A low computational tracking method is then developed using adaptive vehicle patterns that best fit the current road environment. Tests show that the method efficiently detects and tracks vehicles in on-coming traffic for varied weather conditions.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第11期1509-1514,共6页 Journal of Tsinghua University(Science and Technology)
基金 国家"八六三"高技术项目(2011AA110402)
关键词 对向车辆检测 目标跟踪 模板匹配 车流量统计 智能交通 on-coming vehicle detection object tracking templatematchiag traffic flow statistic intelligent transportation
  • 相关文献

参考文献13

  • 1ZHOU Jie, GAO Dashan , ZHANG David. Moving vehicle detection for automatic traffic monitoring [J]. IEEE Trans Vehicular Technology, 2007, S60), 51 - 59.
  • 2王国林,萧德云.一种面向全景视频的交通状态检测方法[J].清华大学学报(自然科学版),2011,51(1):30-35. 被引量:6
  • 3Barnich 0, Droogenbroeck V M. ViBE, A powerful random technique to estimate the background in video sequences [C]/ /Proc IEEE Int Conf Acoustics, Speech, and Signal Processing, Taipei, China, IEEE Press, 2009, 945 - 948.
  • 4Massimo P. Background subtraction techniques, a review [C]// Proc IEEE Int Conf Systems, Man, Cybernetics, Hague, IEEE Press, 2004, 3099 - 3104.
  • 5Cheon M, Lee W, Yoon C, Park M. Vision-based vehicle detection system with consideration of the detecting location [J], IEEE Trans l ntell ig ent Transportation Systems, 2009, 13(3), 1243 -1252.
  • 6CAO Xianbin , WU Changxia , Y AN Pingkun , LI Xuelong. Linear SVM classification using boosting HOG features for vehicle detection in low-altitude airborne videos [C]/ / Proc 18th IEEE Int Conf Image Processing, Brussels, IEEE Press, 2011, 2421 - 2424.
  • 7TAN Feng , LI Luoxin , CAl Bo, ZHANG Dengyi. Shape template based side-view car detection algorithm [C]/ / Proc 3rd Int Workshop on Intelligent Systems and Applications, WuHan, China, IEEE Press, 2011, 28 - Z9.
  • 8CAl Bo, TAN Feng, LU Yi, ZHANG Dengyi. Knowledge template based multi-perspective car recognition algorithm [J]. Int Journal of Information Engineering and Electronic Business, ZOI0, 2(2), 38 - 45.
  • 9Viola P, Jones M. Rapid objects detection using a boosted cascade of simple features [C]/ / Proc IEEE Conf on Computer Vision and Pattern Recognition, Kauai , IEEE Press, ZOOl, 511 - 518.
  • 10Dalal N, Triggs B. Histograms of oriented gradients for human detection [C]/ / Proc IEEE Conf Computer Vision and Pattern Recognition, S. Diego, IEEE Press, 2005, 886 - 893.

二级参考文献12

  • 1乔光军,杨兆选.基于虚拟线的交通信息视频检测技术及应用[J].电子技术应用,2005,31(9):23-25. 被引量:5
  • 2Nikos P, Rachid D. Active contours and level sets for the detection and tracking of moving objects [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(3): 266-280.
  • 3LEI Xie, ZHU Guangxi, Wang Yuqi, et al. Robust vehicles extraction in a video-based intelligent transportation systems [C]// IEEE 2005 International Conference on Communications, Circuits and Systems. Hong Kong: Institute of Electrical and Electronics Engineers Computer Society, 2005 : 887 - 890.
  • 4Odobez J M, Bouthemy P. Robust multiresolution estimation of parametric motion models [J]. Visual Comm and Image Representation, 1995, 12(6): 348-365.
  • 5Paragios N, Tziritas G. Adaptive detection and localization of moving objects in image sequences [J]. Signal Processing: bnageComm, 1999, (14): 277-296.
  • 6Michalopoulos P G. Vehicle detection video through image processing: The autoscope system [J]. IEEE Trans on Vehicular Technology, 1991, 40(1) : 21 - 29.
  • 7Stauffer C, Grimson W E L. Adaptive background mixture models for real time tracking [C]// Proc IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Fort Collins, CO, USA: IEEE Computer Society, 1999: 246-252.
  • 8Karsten M. 3-D reconstruction of a dynamic environment with a fully calibrated background for traffic scenes [J]. IEEE Trans On Circuits and System for Video Technology. 2005, 15(4):538-549.
  • 9LOU Jianguang, TAN Tieniu, HU Weiming, et al. 3-D model-based vehicle tracking [J]. IEEE Transactions on Image Processing, 2005, 14(10): 1561- 1569.
  • 10Abramczuk T. A microcomputer based TV detector for road traffic [J]. In Symposium on Road Research Program. 1984, 3(2): 145-147.

共引文献5

同被引文献18

  • 1顾柏园,王荣本,郭烈,余天洪.基于机器视觉的道路上前方多车辆探测方法研究[J].汽车工程,2006,28(10):902-905. 被引量:11
  • 2DELL N, FRANCIS I, SHEPPARD H, et aL Field evaluation of a camera-based mobile health system in low-resource settings[ C ]// Proc. 16th International Conference on Human-computer Interaction with Mobile Devices & Services. New York : ACM Press, 2014 : 33- 42.
  • 3KURNIAWAN M N, WIDIYANTO D. Implementation of image pro- cessing algorithms and GLVQ to track an object using AR Drone camera [ J]. Journal of Computer Science and Information, 2014, 7 (2) : 111-118.
  • 4CHANG Faliang, ZHANG Guoqiang, WANG Xiaolin, et al. PTZ camera target tracking in large complex scenes[ C ]//Proe. 2010 8th World Congress on Intelligent Control and Automation. Jinan: IEEE Press, 2010: 2914-2918.
  • 5SHAN C F, PORIKLI F, XIANG T, et al. Video analytics for busi- ness intelligence [ M ]. Berlin Heidelberg: Springer, 2012.
  • 6YANG Hanxuan, SHAO Ling, ZHENG Feng, et al. Recent ad- vances and trends in visual tracking: a review [ J]. Neurocomputing, 2011,74(18) : 3823-3831.
  • 7YILMAZ A, JAVED O, SHAH M. Object tracking: a survey [J]. ACM Computing Surveys, 2006, 38 (4) : 1-45.
  • 8KALAL Z, MATAS J, MIKOLAJCZYK K. Online learning of ro- bust object detectors during unstable tracking [ C]//Proc. IEEE On-line Learning for Computer Vision Workshop. New York : IEEE Press, 2009:1417-1424.
  • 9KALAL Z, MIKOLAJCZYK K, MATAS J. Forward-backward error: automatic detection of tracking failures [ C ]//Proc. International Conference on Pattern Recognition. New York: IEEE Press, 2010: 23 -26.
  • 10KALAL Z, MATAS J, MIKOLAJCZYK K. P-N learning: Boot- strapping binary classifiers by structural constraints [ C ]// Proc. IEEE Conference on Computer Vision and Pattern Recogni- tion. San Francisco : IEEE Press, 2010:49-56.

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部