期刊文献+

结合情景和协同过滤的移动推荐算法 被引量:6

A Context-aware Collaborative Filtering Algorithm on Mobile Recommendation
下载PDF
导出
摘要 针对移动个性化推荐问题,通过将用户的情景信息引入到协同过滤推荐过程,提出一种结合情景和协同过滤的移动推荐算法。该算法首先通过情景相似度的计算来获得用户当前情景的近似情景集;并对"用户-项目-情景"三维模型采用情景预过滤方法进行降维,得到传统协同过滤"用户-项目"二维模型,然后结合Slope one算法进行项目的偏好预测和推荐。实验表明,该算法与传统协同过滤、Slope one算法相比,具有更高的推荐精确度。 Towards the problem of personalized recommendation in mobile network, presented a collaborative filtering algorithm based on context similarity of users by incorporating users' context information into collaborative filtering recommendation process. The algorithm calculates firstly context similarities to construct a set of similar contexts related to the current context of the user. Using context pre-filtering recommentation method, the “user- item-context”3D model is reduced to the “user-item”2D model. Finally, it predicts the unknown user preferences and generates recommendations based on Slope one algorithm. Experimental results indicate that this algorithm achieve better recommendation accuracy than the traditional CF algorithm and Slope one algorithm.
出处 《科学技术与工程》 北大核心 2014年第8期49-52,64,共5页 Science Technology and Engineering
基金 国家自然科学基金项目(61075053) 河北省自然科学基金项目(F2013402031)资助
关键词 情景 相似度计算 协同过滤 移动推荐 context similarity measure collaborative filtering mobile recommendation
  • 相关文献

参考文献19

  • 1王立才,孟祥武,张玉洁.移动网络服务中基于认知心理学的用户偏好提取方法[J].电子学报,2011,39(11):2547-2553. 被引量:34
  • 2Adomavicius G, Tuzhilin A. Towards the next generation of recommen- der systems: a survey of the state-of-the-art and possible exten- sions. IEEE Transactions on Knowledge and Data Engineering,2005; 17(6) :734-749.
  • 3许海玲,吴潇,李晓东,阎保平.互联网推荐系统比较研究[J].软件学报,2009,20(2):350-362. 被引量:544
  • 4Sarwar B M, Karypis G, Konstan J A, et al. Application of dimension- ality reduction in recommender system-A case siudy. Proc of the ACM WebKDD Web Mining for E-Commerce Workshop, Boston, MA, United States, 2000 : 82-90.
  • 5Massa P, Avesani P. Trust-aware collaborative filtering for recommen- der systems. Lecture Notes in Computer Science, 2004; 3290: 492-508.
  • 6Vincent S Z, Boi F. Using hierarchical clustering for learning the on- tologies used in reeommendationsystems. Proc of the 13th ACM SIGK- DD International Conference on Knowledge Discovery and DataMin- ing. San Jose, California, United States, 2007 : 599-608.
  • 7Sarwar B, Karypis G, Konstan J, et al. Item-based collaborative filte- ring recommendation algorithms. Proc of the 10th Int Conf on World Wide Web. New York:ACMPress,2001:285-295.
  • 8张锋,常会友.使用BP神经网络缓解协同过滤推荐算法的稀疏性问题[J].计算机研究与发展,2006,43(4):667-672. 被引量:85
  • 9邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 10Xue Guikong, Lin Chenxi, Yang Qiang, et al. Scalablecollaborative filtering using cluster-based smoothing. Proc of the 28th Annum In- ternational ACM SIGIR Conference on Research and Development in Information Retrieval. Salvador, Brazil ,2005 : 114-121.

二级参考文献136

  • 1贾丽会,张修如.BP算法分析与改进[J].计算机技术与发展,2006,16(10):101-103. 被引量:48
  • 2陈刚,刘发升.基于BP神经网络的数据挖掘方法[J].计算机与现代化,2006(10):20-22. 被引量:14
  • 3Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 4Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 5Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 6Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 7Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
  • 8Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html
  • 9Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749.
  • 10Resnick P, Varian HR. Recommender systems. Communications of the ACM, 1997,40(3):56-58.

共引文献824

同被引文献49

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部