摘要
Here we introduce generalized momentum and coordinate to transform seismic wave displacement equations into Hamiltonian system.We define the Lie operators associated with kinetic and potential energy,and construct a new kind of second order symplectic scheme,which is extremely suitable for high efficient and long-term seismic wave simulations.Three sets of optimal coefficients are obtained based on the principle of minimum truncation error.We investigate the stability conditions for elastic wave simulation in homogeneous media.These newly developed symplectic schemes are compared with common symplectic schemes to verify the high precision and efficiency in theory and numerical experiments.One of the schemes presented here is compared with the classical Newmark algorithm and third order symplectic scheme to test the long-term computational ability.The scheme gets the same synthetic surface seismic records and single channel record as third order symplectic scheme in the seismic modeling in the heterogeneous model.
Here we introduce generalized momentum and coordinate to transform seismic wave displacement equations into Hamiltonian system. We define the Lie operators associated with kinetic and potential energy, and construct a new kind of second order symplectic scheme, which is extremely suitable for high efficient and long-term seismic wave simulations. Three sets of optimal coefficients are obtained based on the principle of minimum truncation error. We investigate the stability conditions for elastic wave simulation in homogeneous media. These newly developed symplectic schemes are compared with common symplectic schemes to verify the high precision and efficiency in theory and numerical experiments. One of the schemes pre- sented here is compared with the classical Newmark algorithm and third order symplectic scheme to test the long-term compu- tational ability. The scheme gets the same synthetic surface seismic records and single channel record as third order symplectic scheme in the seismic modeling in the heterogeneous model.
基金
financially supported by the National Natural Science Foundation of China(Grant Nos.41174047,40874024&41204041)