期刊文献+

稀疏相似性度量的模糊鉴别分析方法 被引量:2

Fuzzy Discriminant Analysis Based on Sparse Similarity Measurement
下载PDF
导出
摘要 稀疏表示的数学本质就是稀疏正则化约束下的信号分解.提出一种稀疏相似性的模糊鉴别分析方法.首先,各高维图像样本划分成若干相同大小的局部块并以脊波序列表示,其次通过一种新型稀疏学习算法获得系数分解和对应的稀疏相似性度量,由此构造出稀疏相似度嵌入的模糊鉴别分析准则.该方法利用新型稀疏监督学习作为特征提取工具,克服了传统鉴别分析方法缺乏样本间结构知识的缺点,可有效解决高维非线性小样本问题.在ORL和FERET人脸数据库上的实验结果验证了算法的有效性. The mathematic essence of sparse representation is signal decomposition under the constraint of sparsity regularization. A fuzzy discriminant analysis based on sparse similarity measurement is proposed in this paper. Each high dimensional image sample is firstly partitioned into several local blocks with equal size by the proposed algorithm, and these local blocks are combined to represent the samples as a Ridgelet sequence. Then, a new sparse learning algorithm is presented for coefficient decomposition and the corresponding sparse similarity measurement, and the fuzzy discriminant analysis criterion is subsequently developed by embedding the sparse similarity. The proposed algorithm successfully utilizes the novel sparse supervised learning algorithm as a feature extraction tool. Meanwhile, it overcomes the shortcomings of traditional discriminant analysis method derived from the lack of structure knowledge between samples, especially in the case of high dimensional nonlinear small sample sizes. The experimental results on the ORL and FERET face images show the effectiveness of the proposed method.
作者 宋晓宁 徐勇
出处 《模式识别与人工智能》 EI CSCD 北大核心 2014年第3期199-205,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61100116) 中国博士后科学基金项目(No.2011M500926) 江苏省自然科学基金项目(No.BK2012700) 江苏省博士后科学基金项目(No.1102063C) 人工智能四川省重点实验室开放基金项目(No.2012RZY02) 浙江大学CAD&CG国家重点实验室开放课题项目(No.A1418)资助
关键词 稀疏表示 模糊鉴别分析 系数重构 图像识别 Sparse Representation, Fuzzy Discriminant Analysis, Coefficients Reconstruction, ImageRecognition
  • 相关文献

参考文献33

  • 1Yan S C, Xu O, Zhang BY, et al. Graph Embedding and Extensions: A General Framework for Dimensionality Reduction. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007 , 29 ( 1 ) : 40-51.
  • 2Yang J, Yang J Y. Why Can LOA Be Performed in PCA Transformed Space? Pattern Recognition, 2003, 36(2) : 563-566.
  • 3Song X N, Yang J Y, Wu X J, et al. An Optimal Symmetrical Null Space Criterion of Fisher Discriminant for Feature Extraction and Recognition. Soft Computing, 2011, 15 (2) : 281-293.
  • 4Xu Y, Zhang 0, Iin Z, et al. A Fast Kernel-Based Nonlinear Discriminant Analysis for Multi-class Problems. Pattern Recognition. 2006, 39( 6) : 1026-1033.
  • 5Xu Y, Zhang 0, Yang J, et al. A Two-Phase Test Sample Sparse Representation Method for Use with Face Recognition. IEEE Trans on Circuits and Systems for Video Technology, 2011, 21 (9) : 1255-1262.
  • 6Xu Y, Zhong A, Yang J, et al. LPP Solution Schemes for Use with Face Recognition. Pattern Recognition, 2010, 43 ( 12): 4165- 4176.
  • 7an Z Z, Yong Xu, Zhang D. Local Linear Discriminant Analysis Framework Using Sample Neighbors. IEEE Trans on Neural Networks, 2011,22(7): 1119-1132.
  • 8Xu Y, Zhang 0, Yang J Y. A Feature Extraction Method for Use with Bimodal Biometrics. Pattern Recognition, 2010, 43 (3 ) : 1106-1115.
  • 9高全学,谢德燕,徐辉,李远征,高西全.融合局部结构和差异信息的监督特征提取算法[J].自动化学报,2010,36(8):1107-1114. 被引量:23
  • 10Tenenbaum J B, de Silva V, Langford J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science, 2000,290(5500): 2319-2323.

二级参考文献51

  • 1Yan S C, Xu D, Zhang B, Zhang H, Yang Q, Lin S. Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1): 40-51.
  • 2Murase H, Nayar S K. Visual learning and recognition of 3-D objects from appearance. International Journal of Computer Vision, 1995, 14(1): 5-24.
  • 3Turk M A, Pentland A P. Face recognition using eigenfaces. In: Proceedings of the Conference on Computer Vision and Pattern Recognition. Hawaii, USA: IEEE, 1991. 586-591.
  • 4Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720.
  • 5Tenenbaum J B, de Silva V, Langford J C. A global geometric framework for nonlinear dimensionality reduction. Science, 2000, 290(5500): 2319-2323.
  • 6Seung H S, Lee D D. The manifold ways of perception. Science, 2000, 290(5500): 2268-2269.
  • 7Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(5500): 2323-2326.
  • 8Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 2003, 15(6): 1373-1396.
  • 9He X F, Yan S C, Hu Y, Niyogi P, Zhang H. Face recognition using Laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-240.
  • 10Cai D, He X F, Han J W. Document clustering using locality preserving indexing. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(12): 1624-1637.

共引文献53

同被引文献16

引证文献2

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部