期刊文献+

基于改进交叉熵算法多目标不等间距阵列综合 被引量:6

Multi-objective Unequally-Spaced Array Synthesis Based on Modified Cross Entropy Algorithm
下载PDF
导出
摘要 将模糊C均值聚类算法与传统交叉算法相结合,提出改进交叉熵算法.利用该算法成功完成阵元个数分别为6、8、10、12不等间距阵列综合,解决了不等间距阵列综合中峰值旁瓣电平和波束宽度的多目标优化问题,得到了对应情况下不等间距阵列的峰值旁瓣电平和波束宽度的平衡曲线.优化结果表明,给定波束宽度,阵元个数相同的不等间距阵列的峰值旁瓣电平比均匀阵列下降近30%.在均匀阵列超出截止间距时,可以更加有效准确地找寻峰值旁瓣和波束宽度的折中点. The modified cross entropy algorithm and the program flow were proposed based on the combi nation of fuzzy C mean clustering algorithm and traditional cross entropy algorithm. This algorithm was successfully used in unequally-spaced arrays synthesis, whose number of array element are respectively 6, 8, 10, and 12, and solved the multi objective optimization problems of the peak sidelobe level and beam width in the field of unequally-spaced array synthesis. In the corresponding cases, the balance curves to peak sidelobe level and beam width of unequally-spaced arrays were proposed. Optimization shows that, given the beam width and the number of unequally spaced array elements, the peak sidelobe level of une qually-spaced array was decreased by nearly 30% compared with equally-spaced array. In the uniform array beyond the cutoff distance, the algorithm more efficiently and accurately found tradeoff to peak sidelobe and beamwidth.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2014年第3期372-376,共5页 Journal of Shanghai Jiaotong University
基金 黑龙江省青年科学基金(QC2010023) 黑龙江省普通高等学校青年学术骨干支持计划(1251G055) 黑龙江科技大学优秀青年才俊计划资助
关键词 阵列综合 不等间距阵列 改进交叉熵算法 array synthesis unequally spaced array modified cross entropy algorithm
  • 相关文献

参考文献14

  • 1Pham M T, Zhang D H. Multi guider and cross searching approach in multi objective particle swarm optimization for electromagnetic problems[J].. IEEE Transactions on Magnetics, 2012, 48(2): 539 -542.
  • 2Deh K. Multi-objective optimization using evolution- ary algorithms[M]. Chichester, U K: Wiley, 2001.
  • 3Jain H, I)eb K. An improved adaptive approach for elitist nondominated sorting Genetic Algorithm for many-objective optimizationEC~ // Proceedings of 7th International Conference, EMO 2013. Sheffield, U K.. Springer Berlin Heidelberg, 2013:307 -321.
  • 4JayasingheJ W, Anguera J, Uduwawala D N. A high-directivity microstrip patch antenna design by using genetic a|gorithm optimization [J]. Progress inElectromagnetics Research C, 2013, 37(5) : 131-144.
  • 5Oliveri G, Massa A. Genetic algorithm (GA) en hanced almost difference set (ADS)-based approach for array thinning [J]. lET Microwaves, Antannas & Propagation, 2011, 5(3): 305- 315.
  • 6Cban C Y, Goggans P M. Using bayesian inference for linear antenna array design [JT. IEEE Transac- tions on Antennas and Propagation, 2011, 59 ( 9 ) : 3211-3217.
  • 7Lin C, Qing A, Feng Q. Synthesis of unequally spaced antenna arrays by using differential evolution [J]. Antennas and Propagation, IEEE Transactions on, 2010, 58(8): 2553-2561.
  • 8Behera A K, Ahmad A, Mandal S K, etal. Synthe sis of cosecant squared pattern in linear antenna ar- rays using differential evolutionEC~ //Information & Communication Technologies (ICT), 2013 IEEE Con- ference on. JeJu Island, Korea: IEEE, 2013:1025 -1028.
  • 9Goudos S K, Moysia dou V, Samaras T, et al. Ap- plication of a comprehensive learning particIe swarm optimizer to unequally spaced linear array synthesis with sidelobe level suppression and null control[J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9(3): 125-129.
  • 10Rubinstein R Y. Optimization of computer simulation models with rare events[J]. European Journal of Operational Research, 1997, 99( 1 ) : 89 -112.

同被引文献74

引证文献6

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部