期刊文献+

无重叠视域中多目标最优路径集合的数据关联 被引量:2

The Multiple Target Optimal Path Set's Data Association Algorithm of Non-overlapping
下载PDF
导出
摘要 针对无重叠视域中难以将运动目标与时空因素发生关联或关联后难以求解问题,提出了采用最优路径的数据关联算法并用离散蚁群算法进行了求解。算法首先利用贝叶斯网络,将目标外观匹配相似度、空间约束和时间约束三者融合,把数据关联问题转换为网络中最优路径的选择问题;其次,把路径间样本对的平均相似度设为评价函数,评价函数取最大值时的路径就是最优路径;最后,根据目标的出现在时间和空间存在离散性的特点,用离散粒子群算法求解最优路径,并用粒子编码记录目标运动路径。本算法在由五个摄像机构成的网络中对运动目标进行跟踪仿真,结果表明能有效地求解多目标的最优路径集合,获取了目标在网络中的运动轨迹,实现了接力跟踪,具有良好的鲁棒性。 Moving object is very difficult to be associated with the time and space elements, and also difficult to solve the association. To solve the problems, a algorithm is proposed which take optimal path set's data association algorithm, and the discrete particle swarm algorithm is brought to the solution. Firstly, the algorithm fuses the object's appearance match similarity, time and space constraint by Bayesian network net, and then transforms the data association problem into the optimal path choice in the network. Secondly, the average sample pairs' similarity between paths is set as evaluation function, and when its value is the maximum, the path is optimal. Finally, the emergence of target is discrete on time and space elements, so the discrete particle swarm algorithm is used to obtain the optimal path, and the target's moving path is recorded by particle encode. The algorithm makes a tracking target simulation in the networks composed of five cameras The results show that it can effectively solve the multiple target optimal path set, get the target's movement in the network, realize the relay track, and have good robustness
出处 《光电工程》 CAS CSCD 北大核心 2014年第4期15-20,共6页 Opto-Electronic Engineering
基金 国家自然科学基金项目(61202290 61370173) 浙江省自然科学基金项目(LY12F02012)
关键词 无重叠视域 数据关联 离散粒子群算法 贝叶斯网络 non-overlapping data association discrete particle swarm algorithm Bayesian networks
  • 相关文献

参考文献15

  • 1Chilgunde A, Kumar P, Ranganath S, et al. Multi-Camera Target Tracking in Blind Regions of Cameras with Non-overlapping Fields of View [C]// British Machine Vision Conference, London, British, Sept 7-9, 2004, 13: 1-10.
  • 2Martin Hirzer, Peter M Roth, Martin Kostinger, et al. Relaxed Pair-wise Learned Metric for Person Re-Identification [C]// European Conference on Computer Vision, Florence, Italy, October 7-13, 2012, S8: 1214-1223.
  • 3Zoran Zivkovic. Improved Adaptive Gaussian Mixture Model for Background Subtraction [C]//The International Conference on PatternRecognition, Amsterdam University, Netherlands, 2004, 2: 23-26.
  • 4WANG Weiqiang, YANG Jie. Modeling Background and Segmenting Moving Objects from Compressed Video [J]. IEEE Transactions on Circuits and System for Video Technology(S1051-8215), 2008, 18(5): 670-675.
  • 5GAO Dongfa, JIANG Zhuolin. A New Approach of Dynamic Background Modeling for Surveillance Information [C]//The International Conference on Computer Science and Software Engineering, Wuhan, China, 2008: 850-853.
  • 6Rahimi A, Dunagan B, Darrell T. Simultaneous Calibration and Tracking with a Network of Non-Overlapping Sensors [C]// International Conference on Computer Vision and Pattern Recognition, Washington D C, America, June 27 - July 2, 2004, 11: 187-194.
  • 7Huang T, Russell S. Object Identification in a Bayesian Context [C]// International Conference on Artificial Intelligence, Nagoya, Japan, August23-29, 1997, 11: 1276-1282.
  • 8Huang T, Russell S. Object identification: A Bayesian analysis with application to traffic surveillance [J]. Artificial Intelligence(S1431-1402), 1998, 103(1/2): 1-17.
  • 9Javed O, Shafique K, Rasheed Z. Modeling inter-camera space-time and appearance relationships for tracking across non-overlapping views [J]. Computer Vision and Image Understanding(S1077-3142), 2008, 109(2): 146-162.
  • 10Javed O, Shah M. Tracking in multiple cameras with disjoint views automated multi-Camera surveillance: algorithms and practice [J]. The Kluwer International Series in Video Computing(S1571-5205), 2008, 10: 1-26.

二级参考文献46

  • 1王宁,王从庆.基于高斯粒子滤波的当前统计模型跟踪算法[J].光电工程,2007,34(5):15-19. 被引量:5
  • 2Pan J Y, Hu B, Zbang J Q. Robust and accurate object tracking under various types of occlusions [J]. IEEE Transactions on Circuits and Systems for Video Technology(S1051-8215), 2008, 18(2): 223-236.
  • 3Rinner B, Wolf W. An introduction to distributed smart cameras [J]. Proceedings of the IEEE(S0018-9219), 2008, 96(10): 1565-1575.
  • 4Sankaranarayanan A C, Veeraraghavan A, Chellappa R. Object detection, tracking and recognition for multiple smart cameras [J]. Proceedings of the IEEE(S0018-9219), 2008, 96(10): 1606-1624.
  • 5Yilmaz A, Javad O, Shah M. Object tracking: a survey [J]. ACM Computing Surveys(S0360-0300), 2006, 38(4): 1-45.
  • 6Chang T H, Gong S. Tracking multiple people with a multi-camera system [C]// Proceedings of IEEE Workshop on Multi-Object Tracking. Vancouver, BC, Canada, July 8, 2001: 19-26.
  • 7Nummiaro K, Koller-Meier E, Svoboda T. Color based object tracking in multi-camera environments [C]//25th Pattern Recognition Symposium, Magdeburg, Sept 10-12, 2003. Springer Berlin: 591-599.
  • 8Lien Kuo-Chin, Huang Chung-Lin. Multiview-based cooperative tracking of multiple human objects [J]. Journal on Image and Video Processing(S1687-5176), 2008, 8(2): 1-13.
  • 9Yang T, Chen F, Kimber D, et al. Robust people detection and tracking in a multi-camera indoor visual surveillance system [C]//IEEE International Conference on Multimedia and Expo, Beijing, China, July 2-5, 2007: 675-678.
  • 10Fleuret F, Berclaz J, Lengagne R, et al. Multicamera people tracking with a probabilistic occupancy map [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 2008, 30(2): 267-282.

共引文献12

同被引文献34

  • 1Javed 0, Shafique K, Rasheed Z et al.Modelinglnter-Cam-era Space-Time and Appearance Relationship aor Track-ing Across Non-Overlapping Views [ J ]. Computer Visionand Image Understanding,2008,109( 2) :146-162.
  • 2Luis F,Teixeira,Luis C R.Video Object Matching AcrossMultiple Independent Views Using Local Descriptors AndAdaptive Learning [ J ]. Pattern recognition letters,2009,30(2) :157-167.
  • 3吕晓威,孔庆杰,刘允才,等.无重叠视域摄像机间人行人匹配的特征融合算法[C] //2008年全国模式识别学术会议论文集,2008:73-78.
  • 4Deng Yi,Lu Jian-guo,Qu Xi-long.Video Object MatchingBased on SIFT and Rotation Invariant LBP [ J ].TELKOMNIKA ; Indonesian Journal of Electrical Engi-neering, 2013 ,11(10);112-117.
  • 5Tian Lu,Wang Sheng-jin,Ding Xiao-qing et al.HumanDe-tection and Tracking using Apparent Features underMulti-Cameras with Non-Overlapping [C] // 2012 Inter-national conference on audio,language and image process-ing.IEEE,2012 : 1082-1087.
  • 6Zhang Ying,Li Shu-tao.Gabor-LBP Based Region Covari-ance Descriptor for Person e-identificaion [C] // 2011Sixth International Conference on Image and Graphics, v.1,2011:368-371.
  • 7Zhao R, Ouyangand W, Wang X. Unsupervised SalienceLearning for Person Re-Identification [ C ] // IEEE Interna-tional Conference on Computer Vision and Pattern Recog-nition ( CVPR) .Portland,2013 :221 -225.
  • 8Felzenszwalb P F, Girshick R B , McAllester D. Discrimi-natively Trained Deformable Part Models [ DB/OL ] . http ://www.CS.uchicago.edll/ - pff/latenl/.
  • 9Wang X,Doretto G,Sebastian T,et al.Shape and Appear-ance Context Modeling[ C] //ICCV ,2007 ; 152-157.
  • 10Zheng W, Gong S, Xiang T. Re-identification by Relative Distance Comparison [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 2013, 35(3): 653-668.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部