期刊文献+

一种基于局部加权回归的润滑油磨粒在线分析算法 被引量:4

An Online Oil Debris Analysis Algorithm Based on Locally Weighted Regression
下载PDF
导出
摘要 掌握润滑油中磨粒的尺寸和浓度信息可以获知设备的润滑状态,从而可以采取针对性的维护措施,预防设备过早失效。本研究以自制的在线润滑油磨粒检测传感器为平台,将油液中铁磁性磨粒经过时产生的电磁扰动转换为相对应的电压信号,并设计硬件电路将此电压信号转化成真有效值信号;同时提出一种基于局部加权回归的平滑滤波算法(LOWESS)对信号进行降噪和特征提取,以在温漂、零漂、电磁干扰等噪声环境下实时获取润滑油中磨粒的尺寸和浓度信息;最后将检测结果与MetalSCAN3110磨粒传感器的结果对比,证明了该方法的可行性。 The oil debris size and density information can reflect the lubrication condition of the rotating equipments, which can help to take appropriate measures to prevent premature failure. The disturbance generated when the ferromagnetic debris passed through is converted to corresponding voltage signals based on the electromagnetic oil debris sensor and then is transformed into true RMS signal by a hardware circuit. An oil debris online identification algorithm is proposed based on a locally weighted regression scatter plot smoother(LOWESS) to noise reduction and feature extraction in order to obtain the real-time information of the size and density of the ferromagnetic particles in the temperature drift, zero drift, electromagnetic interference and other noise environments. Finally, the feasibility and effectiveness of the proposed method is proved by the contrast between the detected results of the MetalSCAN3110 sensor and our method.
出处 《失效分析与预防》 2014年第1期6-10,共5页 Failure Analysis and Prevention
基金 国家自然科学基金(60905046) 无损检测技术教育部重点实验室开放基金(ZD201329007)
关键词 润滑油磨粒监测 故障诊断 特征提取 信号处理 oil debris monitoring fault diagnosis feature extraction signal processing
  • 相关文献

参考文献10

  • 1黎琼炜,毛美娟,陈勇.油液分析现状与发展方向研究[J].中国机械工程,2004,15(3):272-275. 被引量:25
  • 2Zhu J, He D, Bechhoefer E. Survey of lubrication oil condition monitoring, diagnostics, and prognostics techniques and systems [J]. Journal of Chemical Science and Technology, 2013, 2 (3) :100-115.
  • 3Du L, Zhn X L, Han Y, et al. Improving sensitivity of an inductive pulse sensor for detection of metallic wear debris in lubricants using parallel LC resonance method[J]. Measurement Science and Technology, 2013,24(7) :075106.
  • 4Du L, Zhe J. A high throughput inductive pulse sensor for online oil debris monitoring[ J ]. Tribology International, 2011,44 ( 2 ) : 175 - 179.
  • 5Du L, Zhu X L, Han Y, et al. High throughput wear debris detection in lubricants using a resonance frequency division multiplexed sensor [ J ]. Tribology Letters, 2013,51 ( 3 ) : 453 - 460.
  • 6Fan X, Liang M, Yeap T. A joint time-invariant wavelet transform and kurtosis approach to the improvement of in-line oil debris sensor capability [ J ]. Smart Materials and Structures, 2009,18 (8) : 085010.
  • 7Bozchalooi I S, Hang M. In-line identification of oil debris signals: an adaptive subband filtering approach [ J ]. Measurement Science and Technology, 2010,21 (1) :015104.
  • 8Li C, Liang M. Enhancement of oil debris sensor capability by reliable debris signature extraction via wavelet domain target and interference signal tracking [ J ]. Measurement, 2013, 46 ( 4 ) : 1442 - 1453.
  • 9Cleveland W S. Robust locally weighted regression and smoothing scatterplots[J]. Journal of the American Statistical Association, 1979, 74(368) :829 -836.
  • 10Storlie C B, Helton J C. Multiple predictor smoothing methods for sensitivity analysis: description of techniques[J]. Reliability Engineering and System Safety, 2008,93 ( 1 ) :28 - 54.

二级参考文献9

  • 1[1]Nelson I.Compact High Performance XFS Instrument for On-Line Real-Time Metal Analysis of Lubricating Oils.JOAP International Condition Monitoring Conference, Mobile, Alabama, USA, 2000
  • 2[2]Kauffman R E, Ameye J.Development and Seeded Fault Engine Test Evaluation of On-Line Oil Condition Monitoring Sensors for the Joint Strike Fighter.JOAP International Condition Monitoring Conference, Mobile, Alabama, USA, 2002
  • 3[3]Wilson B W, Silvernail G.Automated In-Line Machine Fluid Analysis for Marine Diesel and Gas Turbine Engines.JOAP International Condition Monitoring Conference,Mobile, Alabama, USA, 2002
  • 4[4]Chadha S, Stevenson C, Kyle W, et al.On-line Oil Condition Monitor a Cost Effective Cross-platform Tool for Condition Based Maintenance.JOAP International Condition Monitoring Conference, Mobile, Alabama, USA, 2000
  • 5[5]Tack L M.A Portable FTIR for Field Analysis of Lubricants.JOAP International Condition Monitoring Conference, Mobile, Alabama, USA, 2000
  • 6[6]Jarvis N L, Wohltjen H.Solid-State Microsensors for Lubricant Condition Monitoring-Part Ⅰ:Fuel Dilution Meter.Journal of the Society of Triboiogists and Lubrication Engineers, 1994(9):689~693
  • 7[7]Rowe R,Henning P,Damren R, et al.On-Line Oil Condition Monitor.JOAP International Condition Monitoring Conference, Mobile, Alabama, USA, 2002
  • 8[8]Nowell T J, Curran A, Pyestock D,et al.The Develoqment of a Software Based Tool for the Systematic Classification of Oil-wetted Particles(SYCLOPS)for Use by the Royal.JOAP International Condition Monitoring Conference, Mobile Alabama, USA, 2000
  • 9[9]Donahue A, Fisher G.CH124 Main Gearbox Integrated Health Monitoring Program-Three Case Studies.JOAP International Condition Monitoring Conference, Mobile, Alabama, USA, 2000

共引文献24

同被引文献22

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部