期刊文献+

一种基于模糊信息的距离测度及应用 被引量:3

A Distance Measure Based on Fuzzy Information and Its Applications
原文传递
导出
摘要 通过借用Shannon信息理论中的相关概念,提出了基于模糊信息测度的模糊对称交互熵(FSCE)这一距离测度。接下来证明了它是度量空间中的度量,满足非负性、对称性、三角不等式三个条件。最后利用数值例子说明了在模糊模式识别中,FSCE与常见的模糊贴近度可以得到一致的识别结果,并有其优势和实际意义,为模糊模式识别提供了新的研究方法。 By borrowing some relative concepts in Shannon information theory, we present a new distance measure called fuzzy symmetric cross entropy(FSCE), which is based on the fuzzy information measure theory. Next, we prove that FSCE is a metric which satisfies the conditions of non-negativity, symmetry and triangle inequality. At last, by using numerical examples in fuzzy pattern recognition, we illustrate that the recognition results are accordant with FSCE and other most common fuzzy nearness degree. It indicates that FSCE is practical significant with its advantage. And it can provide a new research approach for fuzzy pattern recognition.
作者 卢国祥
出处 《模糊系统与数学》 CSCD 北大核心 2014年第1期92-97,共6页 Fuzzy Systems and Mathematics
基金 国家自然科学基金资助项目(11001134) 中南财经政法大学教学研究项目(21431111206)
关键词 模糊对称交互熵 三角不等式 模糊模式识别 模糊贴近度 Fuzzy Symmetric Cross Entropy Triangle Inequality Fuzzy Pattern Recognition Fuzzy Nearness Degree
  • 相关文献

参考文献8

  • 1Ding S F, Shi Z Z, Xia S X, Jin F X. Studies on Fuzzy Information Measures[C]//Proceedings of the 4th Inernational Conference on Fuzzy System and Knowledge Discovery. Haikou ,China, 2007,3 : 376 - 380.
  • 2丁世飞,朱红,许新征,史忠植.基于熵的模糊信息测度研究[J].计算机学报,2012,35(4):796-801. 被引量:19
  • 3De Luca A, Termini S. A definition of nonprobabilistic entropy in the setting of fuzzy sets theory[J]. Informatioin and Control,1972,20(3) .-301-312.
  • 4Lin J. Divergence measures based on the Shannon entropy [J]. IEEE Transactions on Information Theory, 1991, 37(1):145-151.
  • 5Ding S F, Shi Z Z. Supervised feature extraction algorithm based on improved polynomial entropy[J]. Journal of Information Science, 2006,32 (3) : 223 - 229.
  • 6Nath P. On the measures of errors in information[J]. Journal of Mathematical Sciences, 1968,3:1- 16.
  • 7汪培庄.模糊数学简介(I)[J].数学的实践与认识,1980,10(2):45-59.
  • 8赵沁平.模糊集合的模糊度与贴近度[J].数学的实践与认识,1982(1):44-49.

共引文献21

同被引文献11

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部