摘要
以文 [1]提出的二维振荡机翼含激波跨声速非定常绕流IA 型反命题变分原理为基础 ,构建求解IA 型反命题的有限元解法。构造了三维时空可变节点有限元来捕获自由尾涡面和翼面几何形状 ,跨声速流中的激波用人工密度法捕获。在远场边界上采用简化的无反射边界条件 ,新型非定常Kutta条件被用于处理尾缘条件。用该方法 ,根据翼型跨声速非定常绕流翼面压力分布求解IA 型反命题 ,得到了NACA6 4A0 10翼型的几何形状 ,计算结果令人满意。
On the basis of the variational principles developed in Ref [1], a finite element method(FEM) is constituted for soluting the inverse problem of 2D unsteady transonic flow around oscillating airfoils, incorporating the non-reflecting far-field boundary conditions and a new unsteady Kutta condition [7] . All unknown boundary(airfoil contour) and discontinuities(shocks and free trailing vortex sheets) are handled(captured) via the functional variation with variable domain and artificial density concept. For the numerical realization of variabledomain variation, a special finite element with selfadjusting nodes is also suggested herein. The numerical results show that the present method is effective for the design of unsteady airfoil.
出处
《计算物理》
CSCD
北大核心
2000年第5期518-524,共7页
Chinese Journal of Computational Physics