期刊文献+

SURE准则的非局部SAR图像相干斑抑制 被引量:5

SAR Image Despeckling Via Modified Non-Local Means: Based on SURE Criterion
下载PDF
导出
摘要 针对传统空域非局部平均方法在合成孔径雷达图像相干斑抑制中存在相似区域提取和方向信息捕获不足的问题,提出了一种基于各向异性高斯方向窗和Stein’s无偏风险估计(SURE)准则融合的非局部均值(NLM)算法。该方法设计多个不同方向的各向异性高斯窗来匹配SAR图像的局部空间几何结构,比传统的方形窗能更好地保护SAR图像中的方向性结构。采用比率测度来衡量图像块间的相似程度,并计算基于该各向异性高斯窗的NLM结果。结合SURE准则来融合不同方向的各向异性高斯窗的非局部平均结果,获得最终的SAR图像降斑结果。针对多幅SAR图像进行对比实验,实验结果表明:该方法在有效抑制SAR图像相干斑的同时能很好地保留图像的几何结构信息,为后续的SAR图像理解与解译提供了良好的基础。 Aimed at the shortage of similar region capture and directional information obtainment for SAR image despeckling using conventional non-local means method (NLM), a new NLM SAR image despeckling method is proposed based on multiple different directional anisotropic Gaussian directional window and Stein unbiased risk estimation (SURE) aggregation. The ratio measurement strategy is utilized to compute the similarity of two patches and the NLM result is computed based on the anisotropic Gaussian windows with some direction. The results of NLM with different anisotropic Gaussian windows are aggregated by using the Stein unbiased risk estimation criterion to obtain the final SAR despeckling result. For multiple SAR images, the experiment results show that the new method has advantages in the SAR image despeckling performance, and can well preserve the local geometric structure information, which is essential for understanding and interpretation of SAR image.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2014年第1期42-48,共7页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(61173093 61072106 61003198 61001206) 教育部长江学者和创新团队支持计划(IRT1170)
关键词 各向异性高斯窗 非局部均值 SAR图像降斑 Stein无偏风险估计 anisotropic Gaussian window non-local means SAR image despecking Stein unbiased risk estimation
  • 相关文献

参考文献14

  • 1焦李成,张向荣,侯彪.智能SAR图像处理与解译[M].北京:科学出版社,2009,第6章.
  • 2ZHANG Xiang-rong, JIAO Li-cheng, LIU Fang, et al. Spectral clustering ensemble applied to SAP, image segmentation[J]. IEEE Trans Geoscience and Remote Sensing, 2008, 46(7): 2126-2136.
  • 3江勇,张晓玲,师君.极化SAR改进Lee滤波相干斑抑制研究[J].电子科技大学学报,2009,38(1):5-8. 被引量:16
  • 4MOLINA D E, GLEICH D, DATCU M. Gibbs random field models for model-based despeckling of SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(1): 73-77.
  • 5张小华,陈佳伟,孟红云,焦李成,孙翔.基于非下采样Shearlet和方向权值邻域窗的非局部均值SAR图像相干斑抑制[J].红外与毫米波学报,2012,31(2):159-165. 被引量:8
  • 6LEPSKI 0 V, MAMMEN E, SPOKOINY V G Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selectors[J]. Ann Statist, 1997, 25(3): 929-947.
  • 7BUADES A, COLL B, MOREL J. A non local algorithm for image denoising[J]. Computer Vision and Pattem Recognition, 2005(2): 60-65.
  • 8CHARLES A D, VINCENT D, JOSEPH S. Anisotropic non-local means with spatially adaptive patch shapes[J]. Lecture Notes in Computer Science, 2012(6667): 231-242.
  • 9FENG H X, HOU B, .GONG M G SAR image despeckling based on local homogeneous-region segmentation by using pixel-relativity measurement[j]. IEEE Trans Geoscience and Remote Sensing, 2011, 49(7): 2724-2736.
  • 10GLEIGH D, DATCU M. Gauss-Markov model for wavelet-based SAR image despeckling[J]. IEEE Signal Processing Letters, 2006, 13(6): 365-368.

二级参考文献23

  • 1陈红艳,李磊民.基于ICA的极化SAR图像相干斑抑制[J].电子科技大学学报,2006,35(4):484-487. 被引量:2
  • 2Ai-Li Wang Ye Zhang Yan-Feng Gu.Simultaneous Speckle Reduction and SAR Image Compression Using Multiwavelet Transform[J].Journal of Electronic Science and Technology of China,2007,5(2):163-166. 被引量:2
  • 3LEE JS, GRUNES M R, SCHULER D L, et al. Scattering-model-based speckle filtering of polarimetric SAR data[J]. IEEE Trans Geosci Remote sensing, 2006, 44(1): 176-187.
  • 4LIU Guo-qing, HUANG Shun-ji, TORRE A, et al. The multilook polarimetric whitening filter (MPWF) for intensity speckle reduction in polarimetric SAR images[J]. IEEE Trans Geosci Remote sensing, 1998, 36(3): 1016-1020.
  • 5GU Jing, YANG Jian, ZHANG Hao, et al. Speckle filtering in polarimetric SAR data based on the subspace decomposition[J]. IEEE Yrans Geosci Remote Sensing, 2004 42(8): 1635-1641.
  • 6LEE J S. Digital image enhancement and noise filtering by use of local statistics[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1980, PAMI-2(2): 165-168.
  • 7LEE J S, GRUNES M R, MANGO S A. Speckle reduction in multipolarization and multifrequency SAR imagery[J]. IEEE Trans Geosci Remote sensing, 1991, 29(4): 535-544.
  • 8LEE J S, MITCHELL R G, GIANFRANCO DE G Polarimetric SAR speckle filtering and its implication for classification[J]. IEEE Trans Geosci Remote Sensing, 1999, 37(5): 2363-2373.
  • 9甘荣兵.合成孔径雷达对抗及目标检测技术研究[D].成都:电子科技大学,2005.
  • 10焦李成,张向荣,侯彪.智能SAR图像处理与解译.北京:科学出版社,2009.

共引文献22

同被引文献35

  • 1贾承丽,匡纲要.SAR图像去斑方法[J].中国图象图形学报(A辑),2005,10(2):135-141. 被引量:24
  • 2曾姝彦,张广军,李秀智.基于Gabor滤波器的图像目标识别方法[J].北京航空航天大学学报,2006,32(8):954-957. 被引量:15
  • 3Argenti F,Alparone L.Speckle removal from SAR image in the undecimated wavelet domain[J].IEEE Trans,on Geoscience and Remote Sensing,2002,40(11):2363-2374.
  • 4Wang Y,Ainsworth T L,Lee J.On characterizing high-resolution SAR imagery using kernel-based mixture speckle models[J].IEEE Geoscience and Remote Sensing Letters,2015,12(5):968-972.
  • 5Wu J,Liu F,Jiao L C.Local maximal homogeneous region search for SAR speckle reduction with sketch-based geometrical kernel function[J].IEEE Trans.on Geoscience and Remote Sensing,2014,52(9):5751-5764.
  • 6Buades A,Coll B,Morel J M.A non-local algorithm for image denoising[C]// Proc.of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2005;60-65.
  • 7Deledalle C A,Denis L,Tupin F.Iterative weighted maximum likelihood denoising with probabilistic patch-based weights[J].IEEE Trans,on Image Processing,2009,18(12):2661-2672.
  • 8Kervrann C,Boulanger J.Local adaptivity to variable smoothness for exemplar based image regularization and representation[J].Interna- tional Journal of Computer Vision,2008,79(1):45-69.
  • 9Louchet C,Moisan L.Total variation as a local filter[J].SIAM Journal on Imaging Sciences,2011,4(2):651-694.
  • 10Yang X Z,Clausi D A.Structure-preserving speckle reduction of SAR images using nonlocal means filters[C]//Proc.of the 16th IEEE International Conference on Image Processing,2009:2985-2988.

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部