期刊文献+

复合载体负载型催化剂制备及其微波辅助催化氧化甲苯性能试验 被引量:4

Preparation of composite carrier loaded catalyst and microwave assisted catalytic oxidation of gaseous toluene
下载PDF
导出
摘要 将吸附材料分子筛粉末、吸波材料碳化硅粉末以及催化活性组分铜(Cu)、锰(Mn)、铈(Ce)盐溶液完全混合,通过制粒、煅烧后制得复合载体负载型催化剂;微波辐照条件下,应用该催化剂进行了甲苯废气的催化氧化性能试验研究.研究表明,复合载体负载型催化剂的优化制备条件为:高岭土为粘合剂,掺入3%的碳化硅,铜锰质量比为1︰1(各5%负载量),铈的掺杂量为1.67%,焙烧温度为500℃,焙烧时间为8h.反应温度210℃下,优化制备的复合载体催化剂催化氧化甲苯的转化率达95%,表现出良好的低温活性和催化氧化性能. Molecular sieve powder, silicon carbide powder and copper (Cu), manganese (Mn) and cerium (Ce) saline solutions were mixed completely, and then pelletized and calcined to prepare composite carrier loaded Cu-Mn-Ce catalyst. The catalyst prepared was applied to oxidize gaseous toluene under microwave irradiation and continuous flow mode, and catalytic performance was mainly checked. The research showed that optimization preparation conditions of the catalyst were kaolin as the binder, 3%silicon carbide doping amount, 1:1 mass ratio for Cu and Mn and 5%loaded amount respectively, 1.67% cerium doping amount, 500℃calcination temperature and 8 h roasting time. Under the reaction temperature of 210℃, the removal efficiency of toluene reached 95%by microwave assisted catalytic oxidation using optimized catalyst. It indicated that the prepared catalyst owned good catalytic activity and performance under low temperature.
出处 《西安建筑科技大学学报(自然科学版)》 CSCD 北大核心 2014年第1期131-136,共6页 Journal of Xi'an University of Architecture & Technology(Natural Science Edition)
基金 西安市产业技术创新计划-技术转移促进工程项目(CX12176-4)
关键词 复合载体负载铜-锰-铈催化剂 微波加热 催化氧化 甲苯 composite carrier loaded Cu-Mn-Ce catalyst microwave heating catalytic oxidation toluene
  • 相关文献

参考文献8

二级参考文献44

共引文献27

同被引文献72

  • 1宋小宝,何世颖,冯彦房,花昀,唐婉莹,朱秋蓉,薛利红,杨林章.载镧磁性水热生物炭的制备及其除磷性能[J].环境科学,2020,41(2):773-783. 被引量:23
  • 2刘云,刘红霞,李秀丽.低温等离子体协同催化降解VOCs的研究进展[J].环境科学与技术,2012,35(S1):116-119. 被引量:12
  • 3何运兵,纪红兵,王乐夫.室内甲醛催化氧化脱除的研究进展[J].化工进展,2007,26(8):1104-1109. 被引量:36
  • 4张妍,李振海.室内空气净化器性能指标的探讨[J].环境与健康杂志,2007,24(6):453-455. 被引量:16
  • 5Kerminen V M, Virkkula A, Hillamo R, et al. Secondary organics and atmospheric cloud condensation nuclei production [ J ]. Journal of Geophysical Research : Atmospheres ( 1954--2012 ) , 2000, 105 ( D7 ) :9255 - 9264.
  • 6Liu Y J, Feng X, Lawless D. Separation of gasoline vapor from nitro-gen by hollow fiber composite membranes for VOC emission control [ J ]. Journal of membrane science,2006,271 ( 1 ) : 114 - 124.
  • 7Sohn W I, Ryu D H, Oh S J, et al. A study on the development of composite membranes for the separation of organic vapors [ J ]. Jour- nal of Membrane Science,2000,175 ( 2 ) : 163 - 170.
  • 8Schmid S, Jecklin M C, Zenobi R. Degradation of volatile organic compounds in a non-thermal plasma air purifier[ J ]. Chemosphere, 2010,79(2) :124 - 130.
  • 9Schiorlin M, Marotta E, Rea M,et al. Comparison of toluene removal in air at atmospheric conditions by different corona discharges[J].Environmental science& technology,2009,43 (24) :9386 -9392.
  • 10Mo J H, Zhang Y P, Xu Q J, et al. Photocatalytic purification of vol- atile organic compounds in indoor air: A literature review[ J]. At- mospheric Environment ,2009,43 (14) :2229 - 2246.

引证文献4

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部