期刊文献+

利用网格索引与R树的弧段求交并行算法 被引量:2

Parallel algorithm for arc intersection based on grid index and R-tree
原文传递
导出
摘要 本文通过对图幅进行网格化划分,建立网格索引,对弧段按网格建立R树空间索引,进一步降低了空的相交判断次数;根据网格之间一定的独立性,对不同网格内弧段进行并行化求交,并在单CPU多核计算机上利用OpenMP并行机制对算法进行了实现。分析与实验表明:改进后的新算法对较大数据量弧段求交的处理效率较高,与同类算法相比,在空间数据拓扑的建立与空间分析的应用中具有一定优势。 A parallel algorithm for arc index with gridding thought. It aims at int intersection was proposed based on grid index and R-tree spatial ersectlon terseeting judgment were further decreased by p grids. According to the independency of grids, the tion. The algorithm was realized on a single-CPU grammmg rithm coul algorithms rithm wou issues of large amount spatial data. Empty times of in- artitioning map and building R-tree spatial index to algorithm parallelly processes different grids intersec- and multi-core computer based on multi-threaded pro- thought and OpenMP mechanism. The analysis and experiment showed that the improved algo- d process a large amount of intersection for arc with high precision. Compared with the similar in the applications of establishing topology and spatial analysis on spatial data, the novel algo- ld be superior.
出处 《测绘科学》 CSCD 北大核心 2014年第3期111-115,共5页 Science of Surveying and Mapping
基金 国家863基金资助项目(2009AA121404)
关键词 弧段求交 网格索引 R树 并行算法 intersection for arc grid index R-tree index parallel algorithm
  • 相关文献

参考文献11

二级参考文献36

  • 1陈正鸣,李春雷.多边形链求交的改进算法[J].计算机辅助设计与图形学学报,2004,16(12):1713-1718. 被引量:15
  • 2孙立新 张怡梅.一种高效的平面曲线求交的矢量算法.全国青年测绘工作优秀论文集[M].中国测绘学会,1996..
  • 3翻腾.基于R-树空间索引系统的研究与应用[D].北京邮电大学,2003.
  • 4BECKMANN N, KRIEGEL H-P, SCHNEIDER R, et al. The R* - tree: An efficient and robust access method for points and rectangles [J]. ACM SIGMOD Record, 1990, 19(2):322-311.
  • 5BOHM C , BERCHTOLD S , KEIM D A . Searching in high -dimensional spaces: Index structures for improving the performance of Multimedia databases[ J]. ACM Computing Surveys, 2001, 33 (3) : 322 -373.
  • 6ROUSSOPOULOS N, KELLEY S, VINCENT F. Nearest neighbor queties[ C]// Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data. New York: ACM, 1995:71 -79.
  • 7HJALTASON G R, SAMET H. Distance browsing in spatial databases[ J]. ACM Transactions on Database Systems, 1999, 24(2) : 265 -318.
  • 8ZHANG DONG-HUI, XIA TIAN. A novel improvement to the R * - tree spatial index using gain/loss metrics [ C]//Proceedings of the 12th Annual ACM International Workshop on Geographic Informa- tion Systems. New York: ACM, 2004:204 -213.
  • 9PAPADIAS D, TAO Y, FU G, et al. An optimal and progressive algorithm for skyline queries [ C]// Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2003:467-478.
  • 10BRINKHOFF T, KRIEGEL H, SEEGER B. Efficient processing of spatial joins using R-trees[ J]. ACM SIGMOD Record, 1993, 22 (2) : 237 - 246.

共引文献19

同被引文献22

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部