期刊文献+

基于矩阵模式的局部子域最大间距判别分析

Local Sub- domains Maximum Margin Criterion Based o Matrix Pattern
下载PDF
导出
摘要 矩阵模式的Fisher线性判别准则(MatFLDA)作为近几年矩阵模式下的经典特征提取方法被广泛地加以研究和运用。然而MatFLDA方法作为全局判别准则一定程度上忽视了样本空间内在的局部结构和局部信息。在矩阵模式下,引入局部加权均值(LWM)并结合最大间距判别分析(MMC),提出一种具有局部学习能力的有监督的特征提取方法:基于矩阵模式的局部子域最大间距判别分析(Mat-LSMMC),提高了MatFLDA方法的局部学习能力,具有较强的特征提取能力。通过测试人造、真实数据集来表明所提方法的优势。 MatFLDA as a classic feature extraction method in recent years is widely studied and used. However, MatFLDA as a global criterion is neglected to some extent sample space inner local structure and local information. Therefore, based on the ma trix pattern, by introducing the Local Weighted Mean (LWM) and combined with Maximum Margin Criterion (MMC), we put forward a certain local learning ability of supervised feature extraction method: Local Sub - domains Maximum Margin Criterion Based Matrix Pattern, Mat - LSMMC), the discrimination analysis with the strong ability of feature extraction can improve the lo cal learning ability of MatFLDA method. Finally, the test on artificial and real datasets shows the above mentioned advantages of the Mat- LSMMC method.
作者 黄丽莉
出处 《盐城工学院学报(自然科学版)》 CAS 2014年第1期26-30,共5页 Journal of Yancheng Institute of Technology:Natural Science Edition
基金 国家自然科学基金(61272210) 江苏省自然科学基金(BK2011417) 苏州大学江苏省计算机信息处理技术重点实验室开放课题(KJS1126) 江苏省新型环保重点实验室开放课题(AE201068)
关键词 矩阵模式的Fisher线性判别准则 局部加权均值 最大间距判别分析 MatFLDA Local Weighted Mean Maximum Margin Criterion
  • 相关文献

参考文献13

  • 1Bian Z Q,Zhang X G.Pattern Recognition[M].Beijing:TsingHua University Press,2001.
  • 2Jolliffe I T.Principal Component Analysis[M].New York:Springer-Verlag,1986.
  • 3Todorov,Valentin,Filzmoser,et al.Comparing classical and robust sparse PCA[C].Advances in Intelligent Systems and Computing.Berlin:Springer Verlag,2013:1 283-1 291.
  • 4Li Ronghua,Liang Shuang,Baciu George,et al.Equivalence between LDA/QR and direct LDA[J].International Journal of Cognitive Informatics and Natural Intelligence,2011,5(1):94-112.
  • 5Dhir Chandra Shekhar,Lee Sooyoung.Discriminant independent component analysis[J].IEEE Transactions on Neural Networks,2011,22 (6):845-857.
  • 6Chen S C,Zhu Y L,Zhang D Q,et al.Feature extraction approaches based on matrix pattern:matPCA and matFLDA[J].Pattern Recognition Letters,2005,26(8):1 157-1 167.
  • 7He Xiaofei,Cai Deng,Niyogi Partha.Tensor Subspace Analysis[C].Advances in Neural Information Processing Systems.2005 Annual Conference on Neural Information Processing Systems.Canada:Neural information processing system foundation,2005:499-506.
  • 8Jun Gao,Chung Fulai,Wang Shitong.Matrix pattern based minimum within-class scarer support vector machines.Applied Soft Computing Journal,2011,11(8):5 602-5 610.
  • 9Wong W K,Zhao H T.Supervised optimal locality preserving projection[J].Pattern Recognition,2012,45 (1):186-197.
  • 10Atkeson,Christopher G,Moore,et al.Locally weighted learning[J].Artificial Intelligence Review,1997,11 (1-5):75-113.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部