期刊文献+

基础-饱和土地基耦合系统分析的微分求积单元法 被引量:2

Differential Quadrature Element Method for Analysis of Foundation-Saturated Soil Coupled System
原文传递
导出
摘要 研究了基础-饱和土地基耦合系统的动力学特性.首先根据多孔介质理论,在小变形的假设下,分别建立了耦合系统中不可压流体饱和土地基和弹性基础的运动微分方程以及相应的边界条件,连接条件和初始条件;然后在空间域采用微分求积单元法对基础-饱和土地基的控制方程进行离散,并提供了正确处理耦合系统界面之间连接条件和间断性条件的方法,从而得到时间域内的一组代数-微分方程;接着运用隐式二阶向后差分格式处理了代数-微分方程组;最后利用牛顿迭代法数值求解了该方程组,得到了耦合系统的数值解,考察了所布节点数和参数对数值结果的影响. The dynamic characteristic of a foundation-saturated soil coupled system was studied in this paper. Firstly, based on the porous media theory, the governing equations of incompressible fluid-saturated soil and elastic foundation were presented in the case of small deformation respectively, and the corresponding boundary conditions, initial conditions as well as the joint conditions were derived. Then, the differential quadrature element method and the second-order backward difference scheme were used to discretize the governing equations of the coupled system on the spatial and temporal domains respectively, in which, a general method was presented to deal with the continuity and discontinuity conditions on the interface between the foundation and the saturated soil, and a set of nonlinear ordinary differential equations was yielded with respect to time. Finally, the Newton-Raphson method was adopted to solve the discretization equations, the dynamic characteristics of the coupled system were analyzed, and the effects of number of grid points and parameters were considered.
出处 《力学季刊》 CSCD 北大核心 2014年第1期54-65,共12页 Chinese Quarterly of Mechanics
基金 国家自然科学青年基金(11002084) 上海市教委创新基金(12YZ074 12YZ092)
关键词 基础-饱和土地基耦合系统 流体饱和多孔介质理论 微分求积单元法(DQEM) 动力学特性 foundation-saturated soil coupled system porous media theory differential quadrature element method (DQEM) dynamic characteristics
  • 相关文献

参考文献17

二级参考文献42

  • 1张纯,胡振东,仲政.集中载荷作用下梯度复合材料梁的小波-微分求积法分析[J].固体力学学报,2006,27(S1):38-42. 被引量:1
  • 2刘干斌,谢康和,施祖元.粘弹性饱和土体中半封闭圆形隧洞的动力响应分析[J].固体力学学报,2004,25(3):285-290. 被引量:19
  • 3刘干斌,谢康和,施祖元.粘弹性饱和土中深埋圆形隧道衬砌-土相互作用[J].工程力学,2005,22(6):148-154. 被引量:8
  • 4Blot M A. Theory of propagation of elastic waves in a fluidsaturated porous solid, Ⅰ ,low frequency ran[J]. J Acoust Soc of Am,1956, 28:168-178.
  • 5Biot M A. Theory of propagation of elastic waves in a fluidsaturated porous solid, Ⅱ : Higher frequency range[J]. J Aeoust Soc Am, 1956, 28 : 179-191.
  • 6Biot M A. Mechanics of deformation and acoustic propagation in porous media[J]. J Appl Phys, 1962,33:1482-1498.
  • 7Thiruvenkatachar V R,Viswanathan K. Dynamic response of an elastic half-space with cylinder cavity time-dependent surface tractions over the boundary of the cavity [J]. J Math Meeh, 1965,14:541-572.
  • 8Kumar R, et al. Radial displacements of an infinite liquid saturated porous medium with cylinder cavity[J]. Computers and Mathematics with Applications, 1999, 37:117-123.
  • 9Senjuntichai T, Rajapakse R K N D. Transient response of a circular cavity in a porouelastic medium[J]. Int J for Numerical and Analytical Method in Geoteehnies, 1993, 17:357-383.
  • 10Carter J P, Booker J R. Elastic consolidation around a deep circular tunnel[J]. Int J Solids Structures, 1982,18(2): 1059- 1074.

共引文献53

同被引文献28

  • 1聂国隽,仲政.变截面门式刚架结构分析的微分求积单元法[J].力学季刊,2005,26(2):198-203. 被引量:3
  • 2聂国隽,仲政.微分求积单元法在结构工程中的应用[J].力学季刊,2005,26(3):423-427. 被引量:12
  • 3胡春林,程昌钧.非线性粘弹性基桩纵向混沌运动[J].岩土力学,2005,26(10):1541-1544. 被引量:7
  • 4任九生,程昌钧.非线性粘弹性桩耦合运动中的混沌分析[J].振动与冲击,2006,25(5):21-23. 被引量:5
  • 5RAO S S. The finite element method in engineering[M]. United Kingdom: Butterworth-Heinemann, 2004.
  • 6LONG Y Q, CEN S, LONG Z F. Advanced finite element method in structural engineering[M]. Beijing: Tsinghua University Press, 2009.
  • 7BORST R, CRISFIELD M A, REMMERS J C, et al. Non-linear finite element analysis of solids and structures[M]. England: John Wiley & Sons Ltd., Publication, 2012.
  • 8DU H, LIM M K, LIN R M. Application of generalized differential quadrature method to structural problems[J]. International Journal for Numerical Methods in Engineering, 1994,37:1881-1896.
  • 9KARAMI G, MALEKZADEH P. A new differential quadrature methodology for beam anlysis and associated differential quadrature element method[J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(32):3509-3526.
  • 10HAN J B, LIEW K M. Static analysis of Mindlin plates: the differential quadrature element method (DQEM)[J]. Computer Methods in Applied Mechanics and Engineering, 1999, 177(1-2):51-75.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部