期刊文献+

空间狭缝流道粘弹流体流动的有限柱解法

The Finite Piece Method for Viscoelastic Fluid Flows in Space Slit Channel
原文传递
导出
摘要 空间狭缝流道在粘弹性聚合物成型加工中较为常见.针对流道特点,仅仅在流动平面内对速度采用形函数插值,在厚度方向采用傅里叶级数逼近流动分布函数,推导弱解形式的单元方程后,通过坐标变换得到整体坐标下的有限元方程系数矩阵,再集合成整体系数矩阵,从而建立了空间狭缝流动的有限柱解法.分别采用有限柱法和三维有限元对积分型K-BKZ本构模型粘弹流体在L型流道的流动进行求解,发现有限柱法与三维有限元的结果在整体上十分吻合.出口处流量分布的误差小于2%,流量的结果仅仅在流道收敛处略有差异,但差异仅局限于很小的区域.相比与三维有限元方法,有限柱法的单元数、计算时间和对内存需求大大减少.研究表明有限柱法是一种分析狭缝流动的简便有效的方法. Space slit channel is extremely common in viscoelastic polymer process. In light of the features of the channel, shape functions of finite element are adopted to approach velocity distributions merely inside the flow plane, and Fourier series were adopted in the through-thickness direction. After the weak formulation of element equation was deduced, the coefficient matrix was transformed from local member coordinate system to the global coordinate system through coordinate transformation. Thereafter they were integrated into an integral coefficient matrix. Thus the finite piece method of space slit flow was established. The flows of viscoelastic K-BKZ fluid in L-shaped channel were solved by using the finite piece method and three dimensional finite element method(3D FEM) respectively. It was found that the results of the finite piece method and 3D FEM were highly consistent as a whole. The error of flow distribution was smaller than 2% at the outlet. There is a minor discrepancy of the pressure in the convergence region of channel and they are restricted to a small region. Comparing with 3D FEM, the elements of finite piece method are very few. Accordingly, the calculation time and the memory requirement are substantially saved. It is suggested by studies that finite piece method is a convenient and effective method for solving slit flow.
出处 《力学季刊》 CSCD 北大核心 2014年第1期149-156,共8页 Chinese Quarterly of Mechanics
基金 国家自然科学基金(11372111)
关键词 粘弹流体 有限柱法 数值模拟 狭缝流道 viscoelastic fluid finite piece method numerical simulation slit channel
  • 相关文献

参考文献14

  • 1ELENI T, GEORGIOS C G, ANDREAS N A. A two dimensional numerical study of the stick-slip extrusion instability[J]. J Non-Newton Fluid Mech, 2007, 146:30-44.
  • 2VIVEK G, ASHIISH L, ROCHISH T. Simulation of viscoelastic flows of polymer solutions in abrupt contractions using an arbitrary Lagrangian Eulerian (ALE) based finite element method[J]. J Non-Newton Fluid Mech, 2007, 143:157-169.
  • 3VIVEK G, ASHIISH L, ROCHISH T. Prediction of extrudate swell in polymer melt extrusion using an Arbitrary Lagrangian Eulerian (ALE) based finite element method[J]. J Non-Newton Fluid Mech, 2009, 156:21-28.
  • 4KARAPETSAS G, TSAMOPOULOS J. Steady extrusion of viscoelastic materials from an annular die[J]. J Non-Newton Fluid Mech, 2008, 154:136-152.
  • 5柳和生,涂志刚,黄兴元.聚合物熔体挤出胀大的三维数值模拟[J].高分子通报,2008(11):31-38. 被引量:5
  • 6柳和生,涂志刚,熊洪槐.聚合物熔体在L型异型材挤出口模内三维粘弹流动数值模拟[J].塑性工程学报,2007,14(2):114-117. 被引量:6
  • 7柳和生,涂志刚,熊洪槐.基于三维粘弹性罚函数有限元分析的塑料异型材挤出口模设计[J].模具工业,2007,33(1):48-52. 被引量:3
  • 8VLECK J, MAILVAGANAM G N, VLACHOPOULOS J. Computer simulation and experiments of flow distribution in flat sheet dies[J]. Adv Polymer Tech, 1990, 10(4):309-322.
  • 9YU W Y, LIU T J, TANG Y S. A hybrid 3DRD finite element technique for polymer processing operations[J]. Polymer Eng Sci, 1999, 39(1):44-54.
  • 10DOUGLAS E S. Design sensitivity analysis and optimization for polymer sheet extrusion and mold filling processes[J]. Int J Numer Meth Eng, 2003, 57(10): 1381-1411.

二级参考文献26

  • 1程源.挤出成型和现代挤出机[J].特种橡胶制品,1993,14(5):50-54. 被引量:6
  • 2柳和生,胡海明.罚有限元法在聚合物成型加工研究中的应用[J].青岛化工学院学报(自然科学版),1995,16(4):376-381. 被引量:8
  • 3柳和生.橡塑异型材口模挤出中的流变学问题[J].塑料机械,1998,(1):12-16.
  • 4涂志刚 柳和生 熊洪槐 等.聚合物挤出数值模拟中的高Weissberg数问题[J].中国塑料,2001,15(4):79-82.
  • 5Tran-cong T, Phan-Thein N. Journal of Non-newtonian Fluid Mechanics, 1988, 30(2):182- 189.
  • 6Tran-cong T, Phan-Thein N. Rheological Acta, 1988, 27(1) :21 - 30.
  • 7Karagiannis A. Rheological Acta, 1988, 28(1):121 - 133.
  • 8Legat V, Marchal J M. International Journal for Numerical Methods in Fluids, 1992, 14:609 - 625.
  • 9Legat V, Marchal J M. International Journal for Numerical Methods in Fluids, 1993, 16:29 - 42.
  • 10Mitsoulis E. Comput. Methods Appl Mech Engrg, 1999,180 : 333 - 344.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部