期刊文献+

Burkholderia sp.ZYB002中lipA基因的敲除对细胞脂肪酶活性的影响

Effect of the lipA Inactivation on the Cell-bound Lipase Yield of Burkholderia sp. ZYB002
下载PDF
导出
摘要 Burkholderia sp.ZYB002菌株不仅能产生大量的胞外脂肪酶,还能产生大量的细胞结合脂肪酶。对细胞结合脂肪酶的种类进行定性研究,将为开发全细胞脂肪酶催化剂奠定基础。通过分析与Burkholderia sp.ZYB002菌株具有较高同源性的Burkholderia cepacia J2315菌株的脂肪酶基因家族,推测潜在的细胞结合脂肪酶编码基因。通过同源重组插入失活Burkholderia sp.ZYB002菌株的lipA基因,筛选出突变体转化子;测定突变体菌株细胞结合脂肪酶的活性,并与野生型菌株比较。试验结果表明,lipA基因插入失活的Burkholderia sp.ZYB002-ΔlipA菌株的细胞结合脂肪酶活性降低了42%。 Burkholderia sp. ZYB002 strain can produce large amount of extracellular lipase and cell-bound lipase. The type of the cell-bound lipase from Burkholderia sp. ZYB002 was qualitatively analyzed, which will help to develop the whole cell lipase in the organic synthesis. Series of potential cell-bound lipase genes were presumed from the known genomic DNA information of Burkholderia cepacia J2315, which was highly homologous to that of Burkholderia sp. ZYB002. The lipA gene from Burkholderia sp. ZYB002 was selected and then inactivated by homologous recombination. The mutant with lipA inactivation was screened and the cell-bound lipase activity from Burkholderia sp. ZYB002-Δ lipA was tested. The cell-bound lipase activity from Burkholderia sp. ZYB002-Δ lipA decreased by 42%.
出处 《生物技术通报》 CAS CSCD 北大核心 2014年第3期123-129,共7页 Biotechnology Bulletin
基金 国家自然科学基金项目(31370802) 福建省科技厅重点项目(2013H0021) 福建省自然科学基金杰青项目(2009J06013)
关键词 伯克霍尔德菌ZYB002 脂肪酶LipA 细胞结合脂肪酶 基因敲除 三亲本杂交 Burkholderia sp. ZYB002 Extracellular lipase A Cell-bound lipase Gene knockout Triparental mating
  • 相关文献

参考文献19

  • 1Hasan F, Shah AA, Hameed A, Industrial applications of microbial lipases [ J ] . Enzyme Microb Technol, 2006, 39 ( 2 ) : 235-251.
  • 2Shu ZY, Wu JG, Cht, n D. et al. Oplinlization of Burkbolderia sp. ZYB002 lipase productio for pitch control in thermomechanical pulping ( TMP ) processes [ J ] . Holzforschung, 2012, 66 ( 3 ) :341-348.
  • 3Shu ZY, Wu JG, Cheng LX, et al. Production and characterislics of the whole-cell lipase from organic solvent tolerant Burkholderiu sp. ZYBO02 [ J ] . Appl l:liochem Biolech, 2012, 166 ( 3 ) : 536-548.
  • 4吴继光,舒正玉,程蓝骍,江欢,祝昌飞,黄建忠.耐受有机溶剂洋葱伯克霍尔德菌ZYB002全细胞脂肪酶酶学性质[J].微生物学通报,2010,37(1):2-6. 被引量:3
  • 5Yu 13,, Xu Y, Wang XQ, et al. Highly enanlioselective hydrolysis of Dl,-menlhyl acelate Io L-menthol by whole-cell lipase from Burkhohleria cepaci,t ATCC 25416 [ J ] . J Mol Catal B Enzym, 2007.47 ( 3-4 ) : 149-154.
  • 6Wang D, Xu Y, Teng Y, Synthetic attic, ally enhancement of membrane-hound lipase from Rhizopus chinensis by prelrealment with isooctane [ J ] . Bioproc Biosyst Eng. 2007, 30 ( 3 ) : 147-55.
  • 7Drue! D, El Abbadi N, Comeau LC. Purificatitm and characterization of the extracellular and cell-bound lipases from a Penicillium cyclopium variety [ J ] . Appl Microbiol Biotechnol. 1992, 37 ( 6 ) : 745-749.
  • 8Kothe M, Anti M. tluber B, el al. Killing of Caenorhabditis elegans by Burkbolderia cepacia is con roled by the cep quorum-sensing system [ J ] . Cell Microbial, 2003, 5 ( 5 ) : 343-351.
  • 9Van HE. Litthauer D. Verger R. Biochemical characterisation and kinetic properties of a purified lipase from Aspergillus niger in bulk phase and monomolecular films [ J ] . Enzyme Microb Technol, 2002, 30 ( 7 ) : 902-909.
  • 10Jia B, Yang JK, Liu WS, et al. Homologous overexpression of a lipase from Burkholderia cepacia using the lambda red recombinase system [ J ] . Biotechnol Lett, 2010, 32 ( 4 ) : 521-526.

二级参考文献12

  • 1Hasan F, Shah AA, Hameed A. Industrial applications of microbial lipases. Enzyme and Microbial Technology, 2006, 39(2): 235-251.
  • 2Rahman RN, Baharum SN, Basri M, et al. High-yield purification of an organic solvent-tolerant lipase from Pseudomonas sp. strain S5. Analytical Biochemistry, 2005,341(2): 267-274.
  • 3El Abbadi N, Druet D, Comeau LC. Immunocytochemical identification and localization of lipase in cells of the mycelium of Penicillium cyclopium variety. Applied Microbiology and Biotechnology, 1995, 42(6): 923-930.
  • 4Ishige T, Honda K, Shimizu S. Whole organism biocatalysis. Current Opinion in Chemical Biology, 2005, 9(2): 174-180.
  • 5De Bont JAM. Solvent-tolerant bacteria in biocatalysis. Trends in Biotechnology, 1998, 16(12): 493-499.
  • 6Pencreac'h G, Leullier M, Baratti JC. Properties of free and immobilized lipase from Pseudomonas cepacia. Biotechnology and Bioengineering, 1997, 56(2): 181-189.
  • 7Tomic S, Ramek M. Quantum mechanical study of Burkholderia cepacia lipase enantioselectivity. Journal of Molecular Catalysis B: Enzymatic, 2006, 38(3/6): 139-147.
  • 8Yu L J, Xu Y, Wang XQ, et al. Highly enantioselective hydrolysis of DL-menthyl acetate to L-menthol by whole-cell lipase from Burkholderia cepacia ATCC 25416 Journal of Molecular Catalysis B: Enzymatic, 2007, 47(3/4): 149-154.
  • 9Mahenthiralingam E, Campbell ME, Foster J, et al. Random amplified polymorphic DNA typing of Pseudomonas aeruginosa isolates recovered from patients with cystic fibrosis. Journal of Clinical Microbiology, 1996, 34(5): 1129-1135.
  • 10Payne GW, Vandamme P, Morgan SH, et al. Development of a reeA gene-based identification approach for the entire Burkholderia genus. Applied and Environmental Microbi- ology, 2005, 71(7): 3917-3927.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部