期刊文献+

风力机传动链多体系统动力学建模方法研究 被引量:5

Study on modeling method of wind turbine drive train multi-body dynamics
原文传递
导出
摘要 以兆瓦级水平轴风力发电机组传动系统为研究对象,基于多体系统建模理论和集中参数法建立了精细的传动系统动力学模型。将传动系统分解成若干子系统,并进一步细化传动系统内部结构;根据子系统动力学模型和边界条件综合得到了传动系统的动力学方程;通过Matlab/Simulink构建相应的仿真模型,并应用其对1.5MW风力机传动链进行了仿真计算。结果表明:考虑齿轮箱各部件的柔性后,传动系统关键部件的振动出现较大范围的波动,且增加了机组总传动比的不稳定性。最后将仿真结果与多体系统动力学软件Adams建立的传动系统虚拟样机运行结果进行了比较,两者振动位移变化关系基本相同,验证了本文模型的有效性。此建模方法为实验室模拟风力发电系统和机组部件的优化设计提供了理论依据。 By taking the drive-train system of megawatt horizontal axis wind turbine as a research object, detailed dynamic model of drive-train is established based on the theory of multi-body dynamics and lumped parameter method. In order to refine its internal structures, drive train system is broke down into several subsystems firstly. The comprehensive system equations are obtained with the boundary conditions after modeling the dynamic model of separate components and then the corresponding simulated model is established by the Matlab/Simulink software. A simulation study of 1.5MW wind turbine drive-train is conducted. The results obtained are compared with those simulated by Adams software to test and verify the accuracy of the models. Results obtained indicate that when consider more freedom of structural degrees into the modeling, there is a larger range of fluctuation in the drive train system, at the same time, it increase the instability of the total ratio. The research may provide theoretical basis and modeling method for wind power simulation and optimization design in laboratory.
出处 《应用力学学报》 CAS CSCD 北大核心 2014年第2期218-223,309,共6页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金(51165019 50875118)
关键词 风电机组 传动链 多体系统 动力学模型 仿真 wind turbine,drive train system,multi-body system,dynamic model,simulation.
  • 相关文献

参考文献8

二级参考文献30

  • 1贾要勤.风力发电实验用模拟风力机[J].太阳能学报,2004,25(6):735-739. 被引量:36
  • 2吴国荣,钟伟芳,李美之,梁以德.大运动柔性梁非线性动力响应分析[J].振动与冲击,2005,24(1):1-3. 被引量:15
  • 3夏品奇,Domin.,P.纵横向耦合梁的谐波响应分析[J].振动工程学报,1995,8(1):67-72. 被引量:7
  • 4包能胜,陈庆新,姜桐.百千瓦级风机建模与仿真[J].太阳能学报,1997,18(1):51-58. 被引量:24
  • 5Ribeiro P, Petyt M. Non-linear vibration of beams with internal resonance by the hierarchical finite-element method[J].J Sound Vibr, 1999, 224(4) :591-624.
  • 6Zhang Y, Murphy K D. Secondary buckling and tertiary states of a beam on a non-linear elastic foundation[J]. Int J Non-Linear Mech, 2005, 40:795-805.
  • 7Maewal A. Chaos in a harmonically excited elastic beam[J]. ASME J Appl Meeh, 2002, 53: 625-631.
  • 8Lacarbonara W, Arafat H N, Nayfeh A H. Non-linear interactions in imperfect beams at veering[J].Int J Non-Linear Mech, 2005,40:987-1003.
  • 9Nayfeh A H, Mook D T. Nonlinear Oscillations [M]. New York: John Wiley & Sons Inc. 1979.
  • 10Lin H H,J Mechan Trans Autom Design,1988年,110卷,221页

共引文献115

同被引文献27

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部