摘要
The generation of functional retinal pigment epithelium (RPE) is of great therapeutic interest to the field of regenerative medicine and may provide possible cures for retinal degenerative diseases, including age-related macular degeneration (AMD). Although RPE cells can be produced from either embryonic stem cells or induced pluripotent stem cells, direct cell reprogramming driven by lineage-determining transcription factors provides an immediate route to their generation. By monitoring a human RPE specific Bestl::GFP reporter, we report the conversion of human fibroblasts into RPE lineage using defined sets of transcription factors. We found that Bestl::GFP positive cells formed colonies and exhibited morphological and molecular features of early stage RPE cells. Moreover, they were able to obtain pigmen- tation upon activation of Retinoic acid (RA) and Sonic Hedgehog (SHH) signaling pathways. Our study not only established an ideal platform to investigate the tran- scriptional network regulating the RPE cell fate deter- mination, but also provided an alternative strategy to generate functional RPE cells that complement the useof pluripotent stem cells for disease modeling, drug screening, and cell therapy of retinal degeneration.
The generation of functional retinal pigment epithelium (RPE) is of great therapeutic interest to the field of regenerative medicine and may provide possible cures for retinal degenerative diseases, including age-related macular degeneration (AMD). Although RPE cells can be produced from either embryonic stem cells or induced pluripotent stem cells, direct cell reprogramming driven by lineage-determining transcription factors provides an immediate route to their generation. By monitoring a human RPE specific Bestl::GFP reporter, we report the conversion of human fibroblasts into RPE lineage using defined sets of transcription factors. We found that Bestl::GFP positive cells formed colonies and exhibited morphological and molecular features of early stage RPE cells. Moreover, they were able to obtain pigmen- tation upon activation of Retinoic acid (RA) and Sonic Hedgehog (SHH) signaling pathways. Our study not only established an ideal platform to investigate the tran- scriptional network regulating the RPE cell fate deter- mination, but also provided an alternative strategy to generate functional RPE cells that complement the useof pluripotent stem cells for disease modeling, drug screening, and cell therapy of retinal degeneration.