期刊文献+

Gravity change observed in a local gravity network and its implication to seasonal precipitation in Dali county, Yunnan province, China 被引量:1

Gravity change observed in a local gravity network and its implication to seasonal precipitation in Dali county, Yunnan province, China
下载PDF
导出
摘要 This study investigates data-processing methods and examines the precipitation effect on gravity measurements at the Dali gravity network, established in 2005. High-quality gravity data were collected during four measurement campaigns. To use the gravity data validly, some geophysical corrections must be considered carefully. We first discuss data-processing methods using weighted least- squares adjustment with the constraint of the absolute gravity datum. Results indicate that the gravity precision can be improved if all absolute gravity data are used as constraints and if calibration functions of relative gravi- meters are modeled within the observation function. Using this data-processing scheme, the mean point gravity pre- cision is better than 12 μgal. After determining the best data-processing scheme, we then process the gravity data obtained in the four measurement campaigns, and obtain gravity changes in three time periods. Results show that the gravity has a remarkable change of more than 50 pgal in the first time period from Apr-May of 2005 to Aug-Sept of 2007. To interpret the large gravity change, a mean water mass change (0.6 m in height) is assumed in the ETOPO1 topographic model. Calculations of the precipitation effect on gravity show that it can reach the same order of the observed gravity change. It is regarded as a main source of the remarkable gravity change in the Dali gravity network, suggesting that the precipitation effect on gravity mea- surements must be considered carefully. This study investigates data-processing methods and examines the precipitation effect on gravity measurements at the Dali gravity network, established in 2005. High-quality gravity data were collected during four measurement campaigns. To use the gravity data validly, some geophysical corrections must be considered carefully. We first discuss data-processing methods using weighted least- squares adjustment with the constraint of the absolute gravity datum. Results indicate that the gravity precision can be improved if all absolute gravity data are used as constraints and if calibration functions of relative gravi- meters are modeled within the observation function. Using this data-processing scheme, the mean point gravity pre- cision is better than 12 μgal. After determining the best data-processing scheme, we then process the gravity data obtained in the four measurement campaigns, and obtain gravity changes in three time periods. Results show that the gravity has a remarkable change of more than 50 pgal in the first time period from Apr-May of 2005 to Aug-Sept of 2007. To interpret the large gravity change, a mean water mass change (0.6 m in height) is assumed in the ETOPO1 topographic model. Calculations of the precipitation effect on gravity show that it can reach the same order of the observed gravity change. It is regarded as a main source of the remarkable gravity change in the Dali gravity network, suggesting that the precipitation effect on gravity mea- surements must be considered carefully.
出处 《Earthquake Science》 2014年第1期79-88,共10页 地震学报(英文版)
基金 financially supported by the CAS/CAFEA International Partnership Program for creative research teams (No. KZZD-EW-TZ-19) the National Natural Science Foundation of China (Nos. 41331066 and 41174063)
关键词 Gravity network Gravity change Gravity datum Weighted constraint Precipitationeffect Gravity network Gravity change Gravity datum Weighted constraint Precipitationeffect
  • 相关文献

参考文献4

二级参考文献36

共引文献82

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部