期刊文献+

脑电信号的多尺度排列熵分析 被引量:46

Multiscale permutation entropy analysis of electroencephalogram
原文传递
导出
摘要 本文利用多尺度排列熵对正常脑电信号和癫痫脑电信号进行了详细的分析和比较,研究了脑电图信号多尺度排列熵值和年龄的关系以及尺度因子对多尺度排列熵值的影响.通过对处于各个年龄段的22组正常人和22组患有癫痫人群的脑电图进行多尺度排列熵分析,发现在相同年龄段的人群中,正常脑电信号的多尺度排列熵值要高于癫痫脑电信号,熵值平均高出约0.19,约7.9%.另外,在尺度因子小于15的情况下,对于在30到35的年龄段正常人群,其多尺度排列熵值最大,随着年龄段的增大或降低熵值都一定程度的降低.结果证明,多尺度排列熵可以成功区分正常脑电信号和癫痫脑电信号,并且熵值可以正确地反映人体大脑发育的一般过程. We carried out a detailed analysis and a comparison between normal and epileptic electroencephalogram (EEG) based on multiscale permutation entropy. The relationship between multiscale permutation entropy values of EEG and age, and the effect of scale factor on multiscale permutation entropy value were also discussed. By analyzing normal and epileptic EEG based on multiscale permutation entropy, we found that, at the same age, multiscale permutation entropy value of the normal group's EEG is higher than that of the epileptic group by an average of 0.19, about 7.9%. In addition, for people of age 3 to 35, their multiscale permutation entropies are clearly maximum. When scale factor is smaller than 15, the value of their entropy would reduce no matter whether the age increases or decreases. The results indicate that multiscale permutation entropy can distinguish between normal and epileptic EEG and reflect the general process of human brain development.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2014年第7期419-425,共7页 Acta Physica Sinica
基金 国家自然科学基金(批准号:61271082 61201029 61102094) 江苏省自然科学基金(批准号:BK2011759 BK2011565)资助的课题~~
关键词 多尺度排列熵 非线性分析 脑电图 癫痫 multiscale permutation entropy, nonlinear analysis, EEG, epileptic
  • 相关文献

参考文献21

  • 1Fisher R S, Boas W E, Blume W, Elger C, Genton P, Lee P, EngelJ 2005 Epilepsia 46 470.
  • 2Iasemidis L D, Shiau A S, Chaovalitwongse W, Sackel?laresJ C, Pardalos P M, PrincipeJ C, Carney P R, Prasad A, Veeramani B, Tsakalis K 2003 IEEE Trans. Biomed. Eng. 50 616.
  • 3Flink R, Pedersen B, Guekht A B, Malmgren K, Michelucci R, Neville B, Pinto F, Stephani U, Ozkara C 2002 Acta Neurol. Scand. 106 1.
  • 4Bian C H, Ma Q L, WangJ 2010 Acta Phys. Sin. 59 4480 (in chinese)[.I:13t, -Q,fm, -rW$ 2010 !jo/]:I:i"li'1'li 59 4480].
  • 5WangJ, Zhao D Q 2012 Chin. Phys. B 21028703.
  • 6You R Y, Chen Z 2005 Chin. Phys. 14 2176.
  • 7Jung T P, Makeig S, Stensmo M, Sejnowski TJ 1997 IEEE Trans. Biomed. Eng. 44 60.
  • 8Ocak H 2009 Expert Syst. Appl. 36 2027.
  • 9刘仙,马百旺,刘会军2013物理学报62020202.
  • 10MarquesJ P, RebolaJ, Figueiredo P, Pinto A, Sales F, Castelo-Branco M 2009 Hum. Bmin Mapp. 30 2986.

共引文献2

同被引文献430

引证文献46

二级引证文献262

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部