摘要
设D=D1p,其中D是无平方因子的正整数,D1不能被3或6k+1形的素数整除,p=3(12r+7)(12r+8)+1(r∈N)是奇素数,利用初等方法证明了当D1≡5(mod 8)时,不定方程x3-8=Dy2(x,y∈N)无gcd(x,y)=1的正整数解.
Let D =D1 p, where D is an positive integer of non-square factor, by using the elementary method,we proved that the Diophantine equation x3-8=DyZ(x,y E N) has no integer solutions with gcd (x,y)= 1 ,where p is an odd prime,p=3(12r+7)(12r+8) +l(r∈ N),DI can't be divisible by 3 or by odd prime of the form 6k+1,D1 = 5(mod 8).
出处
《重庆工商大学学报(自然科学版)》
2014年第4期16-17,共2页
Journal of Chongqing Technology and Business University:Natural Science Edition
关键词
不定方程
奇素数
正整数解
同余式
Diophantine equation
odd prime
positive integer solution
congruence