期刊文献+

变工况特性下的风电轴承早期故障诊断方法 被引量:8

Fault Diagnosis Approach for Incipient Bearing Fault in Wind Turbine under Variable Conditions
下载PDF
导出
摘要 针对风电机组运行环境极端恶劣和运行工况复杂多变造成的故障特征无法准确、及时捕捉的特点,提出基于IMF(Intrinsic Mode Function)分量优化选取和Hilbert谱分析的风电轴承早期故障诊断方法。首先利用阶比重采样技术将时域非平稳信号转换为角域平稳或准平稳信号;然后对角域信号进行EMD(Empirical Mode Decomposition)分解,利用互相关准则和峭度准则选取IMF分量,重构角域信号;最后,采用希尔伯特变换对重构信号进行处理,得到边际谱。通过试验仿真验证了该方法的有效性。 For the extreme operating environment and variable working conditions of wind turbine and difficulty in finding fault feature accurately and promptly,a new incipient bearing fault method based on selecting optimal IMF (Intrinsic Mode Function)and Hilbert spectrum was proposed. Firstly,non-stationary time-domain signals were converted to stationary or quasi-stationary angle-domain signals;Secondly,the EMD (Empirical Mode Decom-position)method was used to decompose modal for angular waveform signal and obtain the IMF,and optimal IMF components were selected by cross-correlation criteria and kurtosis criteria to reconstruct signal. Finally,the re-construction signal was processed by using Hilbert transformation to obtain the marginal spectrum. The paper finally verified the effectiveness of the proposed method through experiment.
出处 《电力科学与工程》 2014年第3期39-44,共6页 Electric Power Science and Engineering
基金 国家自然科学基金资助项目(51075145) 华能科学技术项目(HNKJ-H27) 神华集团科技创新项目(GTKJ-12-02)
关键词 变工况特性 阶比重采样 IMF优化选取 边际谱 variational condition characteristic order resampling IMF optimal selection marginal spectrum
  • 相关文献

参考文献8

二级参考文献51

  • 1王奉涛,马孝江,邹岩崑,张志新.基于小波包分解的频带局部能量特征提取方法[J].农业机械学报,2004,35(5):177-180. 被引量:43
  • 2王凤利,马孝江.基于局域波时频谱的旋转机械早期故障诊断技术[J].农业机械学报,2005,36(1):117-120. 被引量:4
  • 3苗刚,马孝江,任全民.基于J散度的模式分类方法在故障诊断中的应用[J].中国机械工程,2007,18(4):431-433. 被引量:4
  • 4张贤达 保铮.非平稳信号分析与处理[M].国防工业出版社,1999,7.324-352.
  • 5Qian S Chen D.Discrete Gabor Transform[J].IEEE Transaction on Signal Processing,1993,41(7):2429-2438.
  • 6Huang N E, Shen Z, Long S R. The empirical mode decomposition and the Hilbert spectrum for nonlinear nonstationary time series analysis[J]. Proc. R. Soc. , 1998,454: 903-905.
  • 7Flandrin P, Rilling G, Goncalves P. Empirical mode decomposition as a filter bank[J]. Signal Processing Letters,IEEE, 2004, 11(2):112-114.
  • 8Opatinskaia E L,Zhu J,Mathew J.Monitoring Varying Speed Machinery Vibration-Ⅱ Recursive Filters and Angal Domkain.Mechanical Systems and Signal Processing,1995,9(6):647~ 655.
  • 9Fyfe K R, Munck E D S. Analysis of Computed Order Tracking. Mechanical Systems and Signal Processing, 1997, 11(2): 187-205.
  • 10Bossley K M, Mckendrick R J, Harris C J, et al.Hybrid Computed Order Tracking. Mechanical Systems and Signal Processing, 1999, 13(4): 627-641.

共引文献153

同被引文献73

引证文献8

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部