期刊文献+

基于仿生原理的节能减振类人机器人膝关节的设计 被引量:9

Design of Energy-saving and Vibration Damping Knee Joint of Humanoid Robot Based on Bionic Principles
原文传递
导出
摘要 通过对人体膝关节结构的研究,设计了一种基于仿生原理的类人机器人膝关节.仿效人体膝关节处的ACL、PCL(前、后十字韧带)及半月板结构,为机器人膝关节设计了节能和减振结构,降低了机器人在迈步期膝关节的峰值驱动力矩,减小了机器人脚着地阶段膝关节受到的冲击,并增加了膝关节的刚度,提高了机器人行走的稳定性.采用NDI公司的Optotrak Certus三维动态测量系统测得人体各关节运动角度与时间的离散点序列,用最小二乘法拟合成机器人行走步态曲线.在ADAMS软件环境下建立虚拟样机模型,对机器人进行了平地行走仿真分析,仿真结果验证了设计的有效性与可行性. A bionic knee joint of humanoid robot is designed through the study of human's knee joint. Imitating the structure of ACL, PCL (anterior and posterior cruciate ligaments) and meniscus of human's knee joint, an energy-saving and vibration damping structure is designed for robot's knee joint, which lowers the peak driving torque at the moving period, reduces the impact of the knee joint at the plantar contact phase, increases the stiffness of the knee and improves the stability of the walking. Optotrak Certus three-dimensional dynamic measurement system of NDI company is used to measure the angle-time discrete sequence of human body's each joint movement, and the walking gait curves of the robot are fitted by the least squares method. Finally, the walk simulation of the robot is carded out with its virtual prototype established in ADAMS, the results on flat terrain verifies the validity and feasibility of the design.
出处 《机器人》 EI CSCD 北大核心 2014年第2期218-223,共6页 Robot
基金 国家自然科学基金资助项目(51005223 51275505 61105111)
关键词 类人机器人 仿生 节能 减振 仿真 humanoid robot bionic energy-saving vibration damping simulation
  • 相关文献

参考文献12

  • 1Hamon A, Aoustin Y. Study of different structures of the knee joint for a planar bipedal robot[C]//IEEE-RAS International Conference on Humanoid Robots. Piscataway, USA: IEEE, 2009: 113-120.
  • 2杨小兵,袁晓华,房鹤,赵宾,杨光,丁松涛.美军化学防护服防护因数测试用机器人最新研究进展——采用全自动多关节型机器人模型进行防护因数测试的可行性探讨[J].中国个体防护装备,2011(1):37-40. 被引量:2
  • 3Okita S Y, Ng-Thow-Hing V, Sarvadevabhatla R. Learning together: ASIMO developing an interactive learning part- nership with children[C]//18th IEEE International Workshop on Robot and Human Interactive Communication. Piscataway, USA: IEEE, 2009: 1125-1130.
  • 4Kim J H, Kim J Y, Oh J H. Weight-adaptive walking of the passenger-carrying biped robot, HUBO FX-I[C]//IEEE-RAS International Conference on Humanoid Robots. Piscataway, USA: IEEE, 2010: 33-39.
  • 5Collins S, Ruina A, Tedrake R, et al. Efficient bipedal robots based on passive-dynamic walkers[J]. Science, 2005, 307(5712): 1082-1085.
  • 6van Oort G, Carloni R, Borgerink D J, et al. An energy ef- ficient knee locking mechanism for a dynamically walking robot[C]//IEEE International Conference on Robotics and Au- tomation. Piscataway, USA: IEEE, 2011: 2003-2008.
  • 7Ikegami Y, Nagai K, Loureiro R C V, et al. Design of redundan- t drive joint with adjustable stiffness and damping mechanis- m to improve joint admittance[C]//IEEE International Confer- ence on Rehabilitation Robotics. Piscataway, USA: IEEE, 2009: 202-210.
  • 8段相林,郭炳冉,辜清.人体组织学与解剖学[M].4版.北京:高等教育出版社,2006:10-100.
  • 9吕莎,孙倩,张有青.膝关节镜术后护理及功能锻炼体会[J].医学信息,2012,25(10):176-177. 被引量:1
  • 10Abernethy B, Mackinnon L T, Kippers V, et al. The biophysical foundations of human movement[M]. Champaign, USA: Hu- man Kinetics Publishers, 2004:10-100.

二级参考文献11

共引文献2

同被引文献86

  • 1张建卓,董申,李旦.基于正负刚度并联的新型隔振系统研究[J].纳米技术与精密工程,2004,2(4):314-318. 被引量:49
  • 2应申舜,秦现生,任振国,王战玺.仿生关节驱动器动力学分析[J].机械科学与技术,2007,26(11):1501-1506. 被引量:2
  • 3RAIBERT M,BLANKESPOOR K, NELSON G, et al. Big Dog, the Rough-terrain Quadruped Robot [J].IFAC Proceedings Volumes, 2008,41 (2): 10822-10825.
  • 4LEE D G,KIM H S,KIM J W, et al. Design and Manufacture of an Automotive Hybrid Aluminum/composite Drive Shaft[J]. Composite Structures, 2004, 63 (1): 87-99.
  • 5ADIB M A H M,JAAFAR M F. Review: Modelling ofMeniscus of Knee Joint during Soccer Kicking [J/OL]. IOP Conforence Series:Malterials Science and Engineering, 2013,50(1),doi:lO.lO88/1577-899x/5011/012027.
  • 6SCHWEITZER G, MASLEN E H. Magnetic Bearings: Theory, Design, and Application to Rotating Machinery[ M ]. Berlin: Springer, 2009.
  • 7Wolf S, Hirzinger G.A New Variable Stiffness Design: Matching Requirements of the Next Robot Generation [C]//IEEE International Conference on Robotics and Automation. New York: IEEE,2008 : 1741-1746.
  • 8Kong K,Bae J,Tomizuka M.A Compact Rotary Se- ries Elastic Actuator for Human Assistive Systems [C]//IEEE/ASME Transactions on Mechatronics. Kaohsiung, 2012 : 288-297.
  • 9Knox B T,Schmiedeler J P.A Unidirectional Series- elastic Actuator Design Using a Spiral Torsion Spring[J]. Journal of Mechanical Design, 2009, 131 (12) :125001.
  • 10Lens T, Kunz J,Stryk O V. Dynamic Modeling of the 4-DoF BioRob Series Elastic Robot Arm for Simulation and ControI[C]//SIMPAR 2010. Darm- stadt, 2010:411-412.

引证文献9

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部