期刊文献+

基于模拟退火算法的递归自动阈值分割方法 被引量:3

Recursive Otsu Method Based on Simulated Annealing Algorithm
原文传递
导出
摘要 针对目标图像灰度对比度差的现象,以及对目标对象检测实时性的要求,并考虑到传统的Otsu分割方法在分割图像质量较差以及目标区域小时准确性差的缺点,提出了一种基于模拟退火算法的递归Otsu分割方法。在图像直方图呈双峰的情况下能够准确地找到分割阈值。在成像模糊、光照度较差的情况下此方法仍然可以获得较高的准确度。该方法在保证了检测质量的同时并没有导致运算时间的大幅度提升,有效地保证了处理的实时性。实际应用表明该方法切实可行。 For the fast target detection in the poor gray - method based on simulated annealing algorithm is put forward. It is proposed to overcome the disadvantage of traditional Ot su method as low veracity when the pending image is poor and the target is small as well. A fine segmentation result could be expected even the pending image is fuzzy or obscure. With this algorithm, the image can be segmented effectively when lhe histogram distribute as a bimodal shape. With guaranteed detection results, no significant rising of time is caused, whic^x as- sures the real-timing of the process. The experimental results show that this method is practical and has better perlormance.
作者 王玉梅
机构地区 中国人民解放军
出处 《光学与光电技术》 2014年第2期48-52,共5页 Optics & Optoelectronic Technology
关键词 模拟退火算法 OTSU方法 递归算法 图像分割 simulated annealing algorithm Otsu method recursive algorithm image segmentation
  • 相关文献

参考文献11

  • 1Gonzalez R C, Woods R E. Digital image processing [M]. Beijing: Publishing House of Electronics In- dustry, 2002: 567-568.
  • 2Otsu N A. Threshold selection method from gray level histogram[J]. IEEE Trans., 1979, SU-9( I ): 62-66.
  • 3蔡燕柳,贾振红.基于改进的Otsu准则的递归图像分割算法[J].激光杂志,2008,29(6):40-42. 被引量:8
  • 4康怀祺,陈宝国.基于分形的改进Otsu红外图像分割算法[J].红外技术,2009,31(6):359-361. 被引量:11
  • 5薛孝琴,吴怀宇,游辉胜.一种改进Otsu法在Kirsch边缘检测中的应用[J].计算机与数字工程,2009,37(3):167-171. 被引量:6
  • 6M R M Rizk sm IEEE, A E Youssef, S E EI-Nhamy. Adaptive watermarking techniques based on multi-scale morphological image segmentation[J]. IEEE Melecom, 2006, 5(3): 16-19.
  • 7Hewer G, Kenney C, Hanson G, et al. Detection of small obiects using adaptive wavelet-based template matching[C]. SPIE, 1999, 3809: 95-106.
  • 8Sezgin M. A survey over image thresholding tech niques and quantitatives performance evaluation[J]. Journal of Electronic Imaging, 2004, 13 ( 1 ); 146-165.
  • 9Sunil Kunmr, Rajat Gupta, Nitin Nhanna. l ext ex- traction and document image segmentation using matched wavelets and MRF model[J]. IEEE Trans- actions on Image Processing, 2007, 16 ( 8 ): 1057-1061.
  • 10B B Chaudhuri, N Sarkar. Texture segmentation u" sing fractal dimension[J].IEEE Trans. On Pattern Analysis and Machine Intelligence, 1995, 17 (1) : 72-77.

二级参考文献20

  • 1何友金,李凯永,任建广.一种改进的基于递归门限分析的红外舰船目标图像分割方法[J].红外与激光工程,2007,36(z2):267-270. 被引量:4
  • 2陶文兵,刘李漫,田金文,柳健.采用递归门限分析的红外目标分割[J].光电工程,2004,31(10):46-49. 被引量:8
  • 3韩建涛,姜卫东,陈曾平.基于OTSU准则及图像熵的局部递归分割算法研究[J].红外技术,2004,26(6):89-92. 被引量:12
  • 4Sonka M, Hlavac V, Boyle R,艾海舟,译.Image Processing, Analysis and Machine Vision. 2nd ed[M].北京:人民邮电出版社,2003
  • 5O. D. Faugeras. Three Dimensional Computer Vision: A Geometric Viewpoint[M]. MIT Press, Boston, 1993
  • 6DorigoM, Di Caro G, Gambardella L M. Ant Algorithms for Discrete Optimization[J]. Artificial Life, 1999, 5 (2)
  • 7Kirsch R A. Computer Determination Of The Constituent Structure of Biological Images [J].Computers in Biomedical Research, 1971, (4)
  • 8Yu Ye, Lu Jian-Hua,Zheng, Jun-Li. Color Image Edge Detection Algorithm[J].Journal of Tsinghua University,2005
  • 9Kapur J N, Sahoo P K, WongA KC. A NewMthod of Gray - level Picture Thresholding Using the Entropy of the Histogram[J]. Computer Vision, Grphics and Image Processing, 1985, 29 (2)
  • 10Ye zhiwei, Zheng zhaobao, Yu xin Ning xiaogang. Automatic Threshold Selection Based on ACO [C]. Beijing: IEEE International Conference on Neural Networks and Brain, 2005

共引文献22

同被引文献13

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部