期刊文献+

基于改进SVM的模拟电路故障诊断 被引量:1

Analog Circuit Fault Diagnosis Based on Improved SVMAnalog SVM
下载PDF
导出
摘要 针对模拟电路的故障诊断和定位问题,提出了一种改进支持向量机(Support Vector Machine,SVM)故障诊断方法。通过在标准SVM中加入了对数据流形局部分布的约束,设计了一种依赖于数据分布的新型SVM。相对于标准SVM方法而言,新方法有效融合了数据分布的先验信息,提高了模型的诊断精度。将其用于模拟电路的故障诊断,验证了所提方法的有效性。 Focusing on the problem of analog circuit fault diagnosis and location, an improved support vector machine (SVM) was proposed for fault diagnosis. A new type of SVM lying on data distribution was designed by joining the con- straint of distribution of the data manifold. Compared to standard SVM, the proposed method effectively combined prior dis- tribution information of the data to increase the diagnosis accuracy of the model. The simulation results showed the effec- tiveness of the algorithm.
出处 《海军航空工程学院学报》 2014年第2期117-121,共5页 Journal of Naval Aeronautical and Astronautical University
基金 国家自然科学基金资助项目(61203168)
关键词 故障诊断 模拟电路 支持向量机 数据流形 fault diagnosis analog circuit support vector machine data manifold
  • 相关文献

参考文献15

  • 1AMINIAN M, AMINIAN E A modular fault-diagnostic system for analog electronic circuits using neural net- works with wavelet transform as a preprocessor[J]. IEEE Transactions Instrument Measure, 2007, 56 (5) : 1546-1554.
  • 2AMINIAN M, AMINIAN F. Neural-network based ana- log circuit fault diagnosis using wavelet transform as pre- processor[J]. IEEE Transactions on Circuit System Ⅱ: Ex- port Briefs,2000,47(2) : 151-156.
  • 3AMINIAN M, AMINIAN F. Fault diagnosis of nonlinear circuits using Neural Networks with wavelet and Fourier transforms as preprocessors[J]. Journal of Electronic Test- ing,2001,17:471-481.
  • 4AMINIAN M, AMINIAN F. Analog fault diagnosis of ac- tual circuits using neural networks[J]. IEEE Transactions on Instrument Measure, 2002,51 (3) : 544-550.
  • 5HUANG J, HU X G, YANG F. Support vector machine with genetic algorithm for machinery fault diagnosis of high voltage circuit breaker[J]. Measurement, 2011,44: 1018-1027.
  • 6LONG B, TIAN S L, MIAO Q, et al. Research on fea- tures for diagnostics of filtered analog eircuits based on LS-SVM[J]. IEEE Autotestcon, Baltimore, MD, 2011,9: 360-366.
  • 7LONG B, TIAN S L, WANG H J. Diagnostics of filtered analog circuits with tolerance based on LS-SVM using frequency features[J]. Journal of Electronic Testing, 2012,28:291-300.
  • 8孙永奎,陈光,李辉.灵敏度分析和SVM诊断模拟电路故障的方法[J].电子科技大学学报,2009,38(6):971-974. 被引量:4
  • 9宋国明,王厚军,姜书艳,刘红.最小生成树SVM的模拟电路故障诊断方法[J].电子科技大学学报,2012,41(3):412-417. 被引量:9
  • 10XUE H, CHEN S C, YANG Q. Structural support vector machine[Y]. Lecture Notes in Computer Science, 2008, 5263( 1 ) : 501=511.

二级参考文献34

  • 1王承,陈光,谢永乐.多层感知机在模拟/混合电路故障诊断中的应用[J].仪器仪表学报,2005,26(6):578-581. 被引量:12
  • 2TAO Ran,DENG Bing,WANG Yue.Research progress of the fractional Fourier transform in signal processing[J].Science in China(Series F),2006,49(1):1-25. 被引量:100
  • 3WANG P, YANG S. A new diagnosis approach for handling tolerance in analog and mixed-signal circuits by using fuzzy math[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2005, 52(10): 2118-2127.
  • 4CANNAS B, FANNI A, MANETTI S, et al. Neural network-based analog fault diagnosis using testability analysis[J]. Neural Computing & Applications, 2004, 13(4): 288-298.
  • 5STARZYK J A, PANG J, MANETTI S, et al. Finding ambiguity groups in low testability analog circuits[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2000, 47(8): 1125-1137,.
  • 6VAPNIK V N. Statistical learning theory[M]. New York: Springer-Verlag, 1995.
  • 7CRISTIANINI N, SHAWE-TAYLOR J. An introduction to support vector machines and other kernel-based learning mechods[M]. Beijing: Publishing House of Electronics Industry, 2000.
  • 8LEE J Y, HUANG X, ROHRER R. A pole and zero sensitivity calculation in asymptotic waveform evaluation[J] IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1992, 11(5): 586-597.
  • 9NIKOLOVA N K, BANDLER J W, BAKR M H. Adjoint techniques for sensitivity analysis in high-frequency structure CAD[J]. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(1): 403-419.
  • 10HSU C W, LIN C J. A comparison of methods for multiclass support vector machines[J]. IEEE Transactions on Neural Networks, 2002, 13(2): 415-425.

共引文献45

同被引文献12

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部