期刊文献+

地理信息系统在林业精细化管理中的应用 被引量:13

Application of A Geographic Information System in Refined Forestry Management
下载PDF
导出
摘要 地理信息系统(GIS)技术的不断成熟和发展,为林业相关项目的管理工作提供了强有力的技术支撑。在林业精细化管理工作中的资源变化小班定位、小班空间信息采集、资源变化图像档案更新等方面应用GIS技术,并结合遥感(RS)技术、全球定位系统(GPS)技术,在外业生产、内业处理、成果展示等方面,可以改变传统的森林资源管理模式,从而推动林业管理工作向信息化、数字化方向发展。 The constant development and maturation of the geographic information system (GIS) has provided powerful technical support for the management work of forestry-related projects. In the refined forestry management, GIS technology, which has been applied in resource change small-class positioning, small-class spatial information collection and resource change image file update, together with the remote technology(RS) and the global positioning technology(GPS), can change the traditional forest resource management mode in terms of field work production, office work treatment and achievement exhibition, thereby promoting the informationization and digitization of forestry management work.
出处 《林业机械与木工设备》 2014年第4期54-56,共3页 Forestry Machinery & Woodworking Equipment
关键词 地理信息系统 GIS 林业精细化管理 geographic information system GIS refined forestry management
  • 相关文献

参考文献10

二级参考文献82

共引文献83

同被引文献62

  • 1柏延臣,王劲峰.结合多分类器的遥感数据专题分类方法研究[J].遥感学报,2005,9(5):555-563. 被引量:59
  • 2刘纯平.基于Kohonen神经网络聚类方法在遥感分类中的比较[J].计算机应用,2006,26(7):1744-1746. 被引量:9
  • 3戴芹,马建文,刘建波,陈雪.基于遥感数据SOFM网络分类结果的城市增长潜力模型研究——以北京1994~2003年城市扩展为例[J].遥感技术与应用,2006,21(3):200-205. 被引量:7
  • 4Ji C Y. Land-use classification of remotely sensed data using koho- nen self-organizing feature map neural networks [J]. Photogrammet- ric Engineering & Remote Sensing,2000,66 ( 12 ) : 1451 - 1460.
  • 5Kohonen T. Self organization of a massive document collection [ J ]. Neural Networks ,2000,11 ( 3 ) :570 - 584.
  • 6Bagan H, Ma J W. Dimension reduction of self-organized neural net- works classification for multi band satellite data[ J]. Geometries In- formation Science of Wuhan University, 2004,29 ( 5 ) :461 - 465.
  • 7Zhang J, Zhang Y. Classification of hyperspectral data using sup- port vector machine [ A ]. In:Proceedings of IEEE International Conference on Image Processing [ C ] , Thessaloniki Greece, 2001 : 882 - 885.
  • 8He L M, Kong F S. Multiclass SVM based land cover classification with multisource data [ A ]. In: Proeeedings of the Fourth lnterna-tional Conference on Machine Learning and Cybernetics [ C ]. Guangzhou China,2005:3541 - 3545.
  • 9Bateson C A,Asner G P. Endmember bundles:A new approach to incorporating endmember variability into spectral mixture analysis [J]. IEEE Transactions Oil Geoscience and Remote Sensing, 2000,38(2) :1083 - 1094.
  • 10Wu C. Normalized spectral mixture analysis for monitoring urban composition using ETM + imagery[J]. Remote Sensing of Environ- ment,2004,93 (4) :480 - 492.

引证文献13

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部