期刊文献+

基于小波变换和稀疏表示的人脸识别方法研究 被引量:1

An algorithm research of face recognition based on wavelet transformation and sparse representation
下载PDF
导出
摘要 在传统的基于小波变换的人脸识别方法的基础上,加入稀疏表示的方法对人脸识别进行研究,进一步提高人脸识别率。小波变换把人脸图像分解为一幅低频人脸图像和三幅高频人脸图像,低频人脸图像代表人脸图像的全局(整体)信息,高频人脸图像代表人脸图像的纹理和边缘等细节信息。低频人脸图像在人脸识别中起到关键性作用,用正交投影的方法对低频人脸图进行识别得到的低频人脸图像分类隶属度。高频人脸图像在人脸识别中同样存在不可忽略的作用,用基于领域能量的方法把三幅高频人脸图像融合为一幅高频融合人脸图像,然后用稀疏表示的方法对融合图像进行识别得到高频人脸图像分类隶属度。最后把高、低频分类隶属度融合确定人脸图像所属类别,与传统人脸识别方法相比,进一步提高了人脸识别率。 The tranditional face recognition algorithm based on wavelet transformation, using sparse representation to recognize the ignored high-frequency sub-band images and providing higher recognition rates of the face recognition. The Wavelet Transformation transform the face images into a low-frequency sub-band images and three high-frequency sub-band images, as low- frequency sub-band images representing the face image globally (Integrally) information, it plays a key role in face recognition, then calculating the classification membership degree by recognize the low-frequency sub-band images; High-frequency sub-band images with image information including horizontal, vertical and diagonal image , presents the face texture and edge details, also plays a non-negligible role in face recognition. Decomposed high-frequency sub-band image's fusion based on the field of energy can export a high- frequency sub-band fused image which recognized by the sparse representation method, and the classification membership degree used in high-frequency part of the face recognition can be got. Finally, a dynamic weighted fusion method can fusion the two classification memberships and obtain the final classification of membership degree which improves face recognition rate and used in the final face's classification and identification.
机构地区 黑龙江科技大学
出处 《中国科技信息》 2014年第8期155-158,共4页 China Science and Technology Information
基金 黑龙江省教育厅科学技术研究项目(NO:12533054)
关键词 小波变换 稀疏表示 图像融合 人脸识别 wavelet transformation sparse representation face recognition image fusion
  • 相关文献

参考文献9

  • 1C. Nastar, B.Moghaddam, A, Pent and. Flexible images- matching and recoglfition using learned deformations. Computer Vision and Image Understanding, 1997, 65 ( 2 ) : 179-191.
  • 2Cande E. Compressive Sampling [C] Proc. 1 Congress of Mathematicians .2006.
  • 3蔡体健,樊晓平,刘遵雄.基于稀疏表示的高噪声人脸识别及算法优化[J].计算机应用,2012,32(8):2313-2315. 被引量:11
  • 4Wright J, GaneshA, YangAY, etal. R.obust face recognition via sparse representation [J].IEEE Transactions on Pattena Analysis and Mactfinelntelligence, 2009, 31 (2) : 210- 227.
  • 5. Troop, J, A. Gilbert, A, C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53 (12) : 4655 - 4665.
  • 6Wright J, GaneshA, YangA Y, et al. Robust thce recoglfition via sparse representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2(109, 31 ( 2 ) : 210-227.
  • 7程曹宗.应用泛函分析[M].北京:机械工业出版社,2010:47-58.
  • 8张志伟,杨帆,夏克文,杨瑞霞.基于小波变换和NMF的人脸识别方法的研究[J].计算机工程,2007,33(6):176-178. 被引量:8
  • 9Troop, J, A. Gilbert, A, C. Signalrecovery fromrandom naeasurements via orthogonal matching pursuit[J].IEEE Transactions on Infomlation Theory, 2007, 53 (12) : 4655-4665.

二级参考文献24

  • 1Nastar C,Ayache N.Frequency-based Non-rigid Motion Analy-sis[J].IEEE Trans.on PAMI,1996,18(11):1067-1079.
  • 2Daubechies I,Sweldens W.Factoring Wavelet Transforms into Lifting Steps[J].Journal of Fourier Analysis and Application,1998,4(3).
  • 3Sweldens W.The Lifting Scheme:A Custom-design Construction of Biorthogonal Wavelets[J].Applied and Computational Harmonic Analysis,1996,3(2):186-200.
  • 4Lee D D,Seung H S.Learning the Parts of Objects by Non-negative Matrix Factorization[J].Nature,1999,401(6755):788-791.
  • 5Feng T,Li S Z,Shum H Y,et al.Local Non-negative Matrix Factorization as a Visual Representation[C]//Proceedings of the 2nd International Conference on Development and Learning.2002.
  • 6YANG A Y, ZHOU Z, MA Y, et al. Towards a robust face recognition system using compressive sensing[C]// Proceedings of Interspeech: 11th Annual Conference of the International Speech Communication Association. Makuhari, Chiba:[s.n.], 2010: 2250-2253.
  • 7WRIGHT J, GANESH A, YANG A Y, et al. Robust face recognition via sparse representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
  • 8TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Transactions on Information Theory, 2007, 53(12): 4655-4665.
  • 9SHA W.Orthogonal matching pursuit algorithm for compressive sensing [CP/OL].[2011-09-01]. http://www.eee.hku.hk/~wsha/Freecode/freecode.htm.
  • 10KARABULUT G Z,MOURA L,PANARIO D,et al. Flexible tree- search based orthogonal matching pursuit algorithm[C] // ICASSP '05: IEEE International Conference on Acoustics, Speech, and Signal Processing. Piscataway: IEEE, 2005:673-676.

共引文献17

同被引文献15

  • 1Wright J,Yang A Y, Ganesh A, et al. Robust face recognition via spare representation[J]. IEEE Transactions on Pattern A- nalysis and Machine Intelligence ,2010,31 (2) :210-227.
  • 2Gao S H, Tsang L W H, Chia L T. Kernel sparse representation for image classification and face recognition [ C ]//Proc of llth European conference on computer vision. Heraklion, Greece : [ s. n. ] ,2010 : 1-14.
  • 3Zhang L, Yang M, Feng X C. Sparse representation or collabo- rative representation: which helps face recognition? [ C ]// Proc of IEEE international conference on computer vision. Barcelona : IEEE ,2011:471-478.
  • 4Aharon M, Elad M, Bruckstein A. K-SVD:an algorithm for de- signing overcomplete dictionaries for sparse representation [ J ]. IEEE Trans on Signal Processing, 2006,54 ( 11 ) :4311 - 4322.
  • 5Zhang Q,Li B X. Discriminative KSVD for dictionary learning in face recognition[ C ]//Proe of the IEEE conference on com- puter vision and pattern recognition. San Francisco, USA: IEEE ,2010 :2691-2698.
  • 6Frigui H, Krishnapuram R. Clustering by competitive agglom- eration[ J ]. Pattern Recognition, 1997,30 (7) : 1109-1119.
  • 7Mallar S G,Zhang Z. Matching pursuits with time-frequency dictionaries [ J ]. IEEE Transactions on Signal Processing, 1993,41 (12) :3397-3415.
  • 8练秋生,陈书贞.基于混合基稀疏图像表示的压缩传感图像重构[J].自动化学报,2010,36(3):385-391. 被引量:28
  • 9练秋生,张伟.基于图像块分类稀疏表示的超分辨率重构算法[J].电子学报,2012,40(5):920-925. 被引量:52
  • 10朱杰,杨万扣,唐振民.基于字典学习的核稀疏表示人脸识别方法[J].模式识别与人工智能,2012,25(5):859-864. 被引量:36

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部